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THORALF SKOLEM AND THE
EPSILON SUBSTITUTION METHOD
FOR PREDICATE LOGIC*

1. INTRODUCTION

Skolem’s contributions to mathematical logic are fundamental and
far-reaching. A good survey by Hao Wang (1970) is presented in
Fenstad’s collection of Skolem’s works (1970). Even Skolemization,
i.e. the replacement of quantifiers by new constant and function sym-
bols, is too extensive for one talk. Cf. my survey (Mints 1990) of
proof-theoretic aspects and more recent work (Shankar 1992) concern-
ing dynamic Skolemization in automated deduction.

Here I relate some of Skolem’s work (Skolem 1929, §5) to the e-
substitution method, which was the center of interest of Hilbert’s school
in 1920-1930. Hao Wang (1970, p. 26) says: “It is hard to evaluate
the importance of the proofs and comments in this section”. I show
that constructions in Skolem 1929, §5 can be seen as instances of the e-
substitution method and the proof of e-theorems. They provide speed-
up estimates. I review this material in section 2 and then describe
some of the later developments taking models (solutions in Skolem’s
terminology) into account.

2. QUANTIFIER-FREE EXPANSIONS OF FORMULAS AND e-THEOREMS

In this section U,V,... denote arbitrary quantifier-free predicate
formulas with function symbols but without equality. It is well known
that every predicate formula can be put into this form by Skolemiza-
tion. For example,

JwVrIYyWz3ulU (w, x,y, z,u) — Ulc, z, f(x), 2z, 9(x, 2))
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Recall some constructions (introduced by Skolem) in the neighborhood
of the Herbrand theorem.

The universe M; of level k for a formula U is the set of all terms
of depth k constructed from the function symbols and constants in U,
and a constant 0.

The expansion U* of order k of U is the finite conjunction of all
instances of U obtained when free variables range over all elements of
M.

The Solution of level k for U is any model L (truth-value assignment
to atomic subformulas of U¥) verifying U*:

LEU*

The Herbrand theorem is equivalent to a Skolem-type formulation: the
universal closure YU is inconsistent iff U* is inconsistent for some k,
i.e. there is no solution of level k.

Skolem (1929, §5) considers (following Hilbert) the Vertreteraziom

(1) Vo~V (z,9) V V (3, 7))
which is a prenex normal form of the law of excluded middle
(2) Vo (Jy—V(z,y) VVV(x, 2))

The main result of this section is summarized in its title as the con-
sistency of adding axioms (1). This may seem strange, since excluded
middle is obviously true in any model, and hence adding it simply does
not change the truth-value of a sentence. In fact, Skolem produces
bounds for the levels of solutions and inconsistent expansions U*.

First he considers the case when the quantifier Vx in (1) is redun-
dant, in which case adding (1) is the same as adding

Z'==V(a)VV(2)

for a new constant a and a new variable z. Skolem proves the following
statement.

LEMMA 1. For every solution Loy of level 2k for U there is a
solution L} of level k for U&Z':

U&7

Proof. This is simple. Consider the restriction Ly of Lox to the
universe My, of level k. If there is a truth-value assignment to predicate
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symbols in Z' — U over M}, which verifies all instances of V(z), take
such an assignment Wy and set a := 0, i.e. define

Li(p) = LWk (pla := 0])

for any expression p.
If for every Wy, there is a b € My, such that LWy = =V (b), then
set a := b, i.e. fix Wy arbitrarily and define

L (p) = Loy War(pla := b))

O

Since there is only a finite number of potential solutions, this proof
is constructive (as Skolem stresses), as is the following corollary.

COROLLARY 1. If (U&Z")* is inconsistent, then U?* is inconsis-
tent.

Skolem then iterates Lemma 1 to obtain a similar result for (1).
After this he presents a kind of sketch for extension of this construction
to the law of excluded middle with formulas V' of arbitrary quantifier
complexity.

In view of the close connection between cuts on a formula C' and
adding of the axiom —C V C to a cut-free formulation (Kreisel and
Takeuti 1974), one can consider this to be a cut-elimination result.

However, the proof of Lemma 1 also reminds one of Hilbert’s Ansatz
(approach) to the proof of the e-theorem. Indeed, replacing V' with =V
in =Vla] V Vz], substituting a := exV[z] and instantiating variable z
one obtains the e-axiom (critical formula)

(3) Vit = ViexV[z]]

where ¢ may contain exV[z] : ¢t = t/[exV[z]]. The transformation used
in the proof of Lemma 1 is highly reminiscent of Hilbert’s Ansatz for
elimination of the critical formula (3) from a proof: substitute exV[z]
first by 0 and then by ¢'[0]. Then (3) is replaced by a disjunction

(VIE'[ol] — viol) v (VIF'[¢'[oll] — V[¢'[o]])

which is a tautology. The possibility of eliminating all critical formulas
(and hence all axioms (1)) from the proofs of free variable formulas in
predicate logic (the first e-theorem) was proved in Hilbert and Bernays
1939. It is pointed out there (end of vol. 2, section 2.3.d) that this
proof can be traced to W. Ackermann.
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3. €-SUBSTITUTION METHOD FOR INTERPRETED THEORIES
AND ITS TRANSFER TO PREDICATE LOGIC

The epsilon substitution method is based on the language intro-
duced by Hilbert and Bernays (1939) (and later by Bourbaki (1958)).
The main non-Boolean construction of this language is an e-term
exFz]|, read as “an z satisfying the condition F[z]”. In number-
theoretic contexts it is often interpreted as “the least x satisfying F'[z]”.
Existential and universal quantifiers become explicitly definable by

(4) JxFz] = FlexF[z]]; Ve F|z] = Flex—F|[z])
The main axioms of the corresponding formalism are critical formulas
(5) F[t]| = FlexF|[z]]

Hilbert’s approach to transforming arbitrary (non-finitistic) number-
theoretic proofs into finitistic (combinatorial) proofs by means of the
substitution method is described in Hilbert and Bernays 1939. Cf.
also the short and lively presentation by Hermann Weyl (1944). The
approach was sketched above. In more detail it is as follows.

Take all critical formulas (5) occurring in a given proof P. There is
only a finite number of them, so one always deals with a finite system
E of critical formulas. Consider any substitution S of numerals for
constant e-terms. If all critical formulas (5) are true under S, it is
called a solving substitution for the system FE. Hilbert proposed a
specific plan for finding a solving substitution by a series of successive
approximations, described below. If it succeeds and if the last formula
of the proof P, i.e. the formula proved by P, is a constant combinatorial
identity such as 1+2+...410 = 55, replacing all free variables with any
numerals and then each e-term ¢ by S(¢) immediately yields a variable-
free (finitistic, combinatorial) proof of the same identity. Moreover, it
was noted by Ackermann (1940) and stressed later by Kreisel that the
same device allows one to extract the numerical content of existential
proofs, i.e. proofs of existential formulas JxF[z] with combinatorial
(free variable) F[z|. Indeed, JxF[z] is translated as FlexF[z]]. If
S is a solving substitution for the proof P of such a formula, and
N = S(exF|z]) then S(P) is a proof of F[N]. So N is a numerical
realization of the existential quantifier in 3z F/[x].

Hilbert’s suggestion for finding a solving substitution by a succes-
sive approximation method is based on the following idea of generating
substitutions of numerals for closed e-terms. The initial approximation
Sp is identically 0: every e-term is assigned the value 0. At every stage
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only a finite number of e-terms are assigned non-zero values. If approx-
imations Sp, ..., S; are already generated, and S; is not yet a solving
substitution, then S;;; is found by correcting the value of some ez F[z].

The problem stated by Hilbert was to prove termination of the
sequence Sy, S1,S2, ... after a finite number of steps for any system of
critical formulas (5).

After Gentzen’s proof (1936) of cut-elimination and consequently of
consistency for arithmetic (with respect to closed equations) revealed
the role of the ordinal €y, Ackermann (1940) was able to find a final for-
mulation and to give a termination proof for full first-order arithmetic
(pure number theory). This proof was preceded by a termination proof
(also due to Ackermann) for a version of the substitution method for
the first-order predicate logic with equality and extensionality, which
is presented in Hilbert and Bernays 1939. This method proceeds ‘from
above’ similarly to cut-elimination.

I present here a definition of epsilon substitution ‘from below’ for
predicate logic. Extensions by equality and extensionality, as well as
termination proof for the substitution process and derivation of corre-
sponding Herbrand-type theorems, are done in Mints 1995. In fact, I
there prove strong termination: every (not only some special) sequence
of consecutive e-substitutions terminates in a solution.

Note that the substitution method for predicate logic as described
in Hilbert and Bernays 1939 is not strongly terminating: the attempt
to eliminate terms of lower degree first can lead to a loop.

4. PREDICATE CALCULUS. THE SYSTEM PCe

Let L be a language of the first-order predicate calculus (without
equality) with free individual variables denoted by a, b, ... and bound
individual variables by z, y, z, .... Then L. will denote the extension
of L by Hilbert’s e-symbol. More precisely, terms and formulas of L.
are defined simultaneously in the standard way including the clause: if
Fla] is a formula then exF|z] is a term.

Since quantifiers are definable in terms of the e-symbol:

JxF|z] = FlexF[z]]; Ve F[z] = Flex—F|[z]]

I am interested mainly in quantifier-free formulas of L and L..

An ezpression is a term or a formula. A quasiexpression (quasiterm,
quasiformula), or briefly gexzpression (gterm, qformula), is obtained
from an expression (term, formula) by replacing some occurrences of
free variables with bound ones.
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By a subterm of an expression I mean an occurrence of a term in
it. A subterm t of a term or formula e is proper if it does not coincide
with e. An exterior proper subterm of e is a proper subterm of e which
is not a proper subterm of any proper subterm of e. By a subgterm of
a gexpression I mean an occurrence of a qterm in it.

I use metavariables s, ¢, ... for gterms, F, G, ... for qformulas, €,
g, ... for gqexpressions.

The matriz of a term is obtained by replacing all its exterior proper
e-subterms with new distinct free variables.

Derivable objects of the system PCe are formulas.

Axioms are substitution instances of propositional tautologies and
critical formulas

(6) F[t| — FlexF[x]]

The only rule of inference is modus ponens.

The term exF in a critical formula is the main term, and the term
t is the side term.

Recall (Hilbert and Bernays 1939) that PCe is equivalent to first-
order classical logic.

In the following we are interested in term models M of the language
L, where the universe consists of all terms of L (i.e. e-free terms), and
hence they are treated as constants. Functional symbols of M are
defined “formally”:

M(f)(t].u"'atn) :f(t1,...,tn)

Terms of L will be denoted by c¢,cq,... .

5. EPSILON SUBSTITUTION METHOD FOR PCe

Assume that a finite system FE of critical formulas is fixed.

An expression is canonical iff it does not contain proper e-subterms.

The rank rk(e) of an expression e is defined in the following well-
known way: The rank of an e-free term is 0. 7k(f(t1,...,t)) =
max(rk(t1),...,rk(ty)). rk(exF[z]) = max(rk(eyG) | Fla] contains
subterm eyG containing a) + 1. The rank of any other expression is
the maximum rank of e-terms occurring in it. The rank of a critical
formula (6) is the rank of its main term, i.e. rk(ezF|[z]).

LEMMA 2. Ifs andt are terms and e[a] is an e-term then

rk(e[s]) = rk(e[t]) = rk(e[a])
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Proof. By induction on length of e-terms. a
LEMMA 3. For any expression elal, for any term t, for any e-free
term c

rk(ele]) < rk(e[t])

Proof. Immediate from the previous Lemma. a

The degree d(e) of a term e is defined as the maximum nest-
ing of its e-subterms: d(e) = 0 for any efree expression e.
d(exA) = 1, if exA has no proper esubterms. d(f(t1,...,t,)) =
max(d(t1),...,d(t,)), if f is a function constant. d(exAlz,ty,...,t,]) =
max(d(t1),...,d(t,)) + 1, where t1,...,t, are all outermost proper -
subterms of exA[xz, t1,. .., ty].

5.1. Epsilon Substitution

The definition presented here is intended to be as similar as pos-
sible to Ackermann’s (Ackermann 1940, Hilbert and Bernays 1939)
definition for first-order arithmetic. A less essential difference concerns
syntactic form: Ackermann uses finite functions as interpretations of e-
matrices, and I (following Mints and Tupailo 1993) use finite sequences
of equations to represent graphs of such functions. A much more im-
portant difference is the use of the standard model for arithmetic in
Ackermann’s construction: the values of all constant terms become
computable as soon as an e-substitution is fixed. The same applies to
the truth-values of constant quantifier-free formulas (containing no €).

For predicate logic the same situation is achieved if some term
model of the language L is fixed. This motivates the definition of the
e-substitution and reduction sequence of e-substitutions given below.

DEFINITION 1. Epsilon substitution (e-substitution or simply
substitution) is a finite list of equations

(7) exFy =cy,...,exF}, = cp,

where exF; are distinct canonical e-terms, and c; are e-free terms. The
terms exkF; are the main terms of the corresponding equations; c; are
their values.

5.2. Computations under a given e-substitution

e-substitution (7) is finite, but it will be extended to all e-terms in
a standard way, i.e. by assigning a default value to all e-terms outside
the domain of (7). We fix a constant (or a free variable if there are no
constants) of the language L as a default value, and denote it by 0.
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Let S be an epsilon substitution. Below we define computation step
e 2 g (abbreviated e — g). The computation relation 5, (abbreviated

—) is defined as the reflexive transitive closure of =Y

DEFINITION 2. COMPUTATION STEP. (i) exF' — ¢ if exF = c is
in S. (ii) exF — 0 if exF = ¢ is not in S for any c, but exF is a
canonical e-term. (iii) e[u] — e[n] if e[u] is an expression containing
proper e-subterms, u are all its deepest e-subterms, u — n and n is a
list of e-free terms.

DEFINITION 3.  The S-value S(e) of an expression e is any e-free

expression such that e N S(e). The S-canonical form of an e-term e

is a canonical e-term CanS(e) such that e N CanS(e).

Note 1. 1 defined computations from inside. The S-value of an
expression is an expression of the same sort. For example, the S-value
of an e-term is an e-free term, the S-value of a quantifier-free formula
is an e-free quantifier-free formula, i.e. quantifier-free formula of L.

LEMMA 4. EXISTENCE AND UNIQUENESS OF S-VALUES. For
any e-substitution S, expression e and e-term v the values S(e) and
CanS(v) ezist and are unique.

Proof.  Uniqueness follows from the fact that at most one compu-
tation step is applicable to an expression e. Indeed, if e contains proper
e-subterms then the only possible computation step is replacement of
all deepest e-subterms of e by their S-values. If e is a canonical e-term
then it is computed in one step to an e-free term determined by S.

Existence is proved by induction on the number of e-symbols. O

LEMMA 5. For any e-substitution S and for any expression elu),
if u is an exterior proper e-subterm of e then

Proof. By easy induction on e. a
LEMMA 6. CHURCH-ROSSER PROPERTY. For any S and e[t], if
t is a subterm of e[t] then

Proof. By induction on length of e[t] . If e[t] is ¢ then the assertion
is evident. Otherwise by the previous Lemma it is sufficient to prove
the assertion for the exterior proper e-subterm of e[t| containing t.
The latter has lesser length and it is possible to apply the induction
hypothesis to it. a
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LEMMA 7. If S is an e-substitution and e is an expression, then
the rank of any e-term used in the computation of CanS(e) and S(e)
does not exceed the maximum rank of e-terms occurring in e.

Proof. Computation step does not increase rank. a

5.8.  Reduction sequence of e-substitutions

As noted in 5.1, a model is needed to determine truth-values of
formulas. Assume that a term model M for the language L is fixed.
Each term or a formula e of the language L has a value in M, which is
denoted by M(e). Indeed, if e does not contain free variables, its value
in M is computed in the standard way. If e contains free variables,
they are elements of the universe of M, and e can still be treated as a
closed term or formula. If e is a term, then M(e) = e is a term, and if
e is a formula, then M (e) is a truth-value T or L. Combining this with
the previous section, we define the value under S and M (SM-value
for short) by

(8) SM(e) = M(S(e))

for any term or formula e of the language L..

Note 2. 1If e is a term of the language L., then SM(e) is a term
of L; if e is a formula of L., then SM(e) is a truth-value T or L. In
particular, each critical formula (6) has a truth-value under SM.

Note 3. The canonical form of an e-term is not redefined in con-
nection with M.

DEFINITION 4. An e-substitution S is correct under M iff for ev-
ery equation exF|x] = ¢ occurring in S one has SM(F[c]) =T .

Let E be a finite system {Crr | I = 1,...N} of critical formu-
las, S an e-substitution (7) and M a term model of L. Suppose that
SM(E) = L, i.e. one of the critical formulas is false under SM.
Choose a false critical formula

(9) G[t,u] — GlexG|z,u],u]

with the outermost proper subterms u. Then S’ is obtained from S as
follows:
(i) The equation

(10) exGlz, S(u)] = S(t)

is added. (ii) If an equation exG|z, S(u)] = v for some v occurs in S,
then it is deleted (in fact this never happens). (iii) All equations with
rank > rk(ezG[z, u]) are deleted.

This operation of transforming S into S’ is called a reduction of S
or an e-step (for the critical formula (9)). We say that (9) is reduced at
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this step. The rank of a reduction is the rank of the equation which is
added in it.
Note. Since the critical formula (9) was false under SM , one has

SM(GlexG|z,u],u]) = SM(G[0,S(u)]) = L

and

(11) SM(G[t,u]) = SM(G[S(t), S(w)]) = T

A reduction sequence of e-substitutions is any (finite or infinite)
sequence of reductions:

=5 S, 9,

A standard reduction sequence (considered by Ackermann (Hilbert
and Bernays 1939)) is a special reduction sequence with the following
rule of choosing a false critical formula for the reduction: it has to be
the first critical formula of minimal rank.

Note that a reduction sequence terminates only if a solution is
reached: all formulas in E are true.

The problem of termination of the e-substitution method is the
problem of termination of at least one reduction sequence, for instance
the standard one. The problem of strong termination is the problem
of termination of all reduction sequences. Termination and strong ter-
mination can be thought of as analogues of normalization and strong
normalization. In the next section I prove strong termination, i.e. ter-
mination of all possible reduction sequences.

LEMMA 8. ACKERMANN’S LEMMA. In all reduction sequences
all e-substitutions are correct.

Proof. The initial empty substitution is obviously correct. Let S
be correct, SM(E) = L, false critical formula (9) with rk(ezG[z, u]) =
r be chosen for reduction and equation (10) be added, so that (11)
holds. Note that all e-terms occurring in the next e-substitution S’
are canonical e-terms of ranks < r. Consider any equation exzA[z] = ¢
which is inherited by S’ from S. We have rk(A[c]) < r for any e-free
term c. Since parts of S and S’ of ranks < r coincide, by the Church-
Rosser property (Lemma 6) we have

(12) S(Alc]) = §'(Alc])

and hence SM(A[c]) = S’M(A]c]) = T. For the equation (10) added
in the e-step the requirement of correctness is satisfied by (11, 12). O
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COROLLARY 2. Case (ii) of the definition of e-step never occurs
in a reduction sequence: non-default values can be simply deleted; they
are never changed to other non-default values.

Proof. Let an e-substitution S occur in a reduction sequence.
Then S is correct. If Can(e) = g occurs in S, then S(Cr) is true
since its conclusion is true. a

THEOREM 3.  All reduction sequences for E starting with () termi-
nate.

Proof. Cf. Mints 1995. a

6. THE TREE OF REDUCTION SEQUENCES

The definition of a reduction sequence in section 5.3 and the termi-
nation proof in section 3 work without change if M is only a partial
model, provided all necessary computations can be performed.

DEFINITION 5. A diagram is any (finite or infinite) sequence of
literals of the language L containing no pair of complementary literals.
Recall that a literal is an atomic formula or a negation of an atomic
formula.

DEFINITION 6. Diagram M is suitable for a system E of critical
formulas and e-substitution S, if for any atomic subformula e of E or
of a formula F[c] for exF|z] = ¢ in S the value M(S(e)) is determined,
that is

S(e) e M or (=S(e)) e M

For a suitable diagram the value SM(e) is defined as before.

Note that the computations needed to verify correctness of a sub-
stitution still go through. A reduction sequence for E with respect to
a diagram M is defined as before for models (section 3.3), with the
additional possibility of a deadlock, if M is not suitable for E and S;
for some 1.

DEFINITION 7. A diagram M is suitable for a reduction sequence
(for a system E) if the deadlock never occurs.

THEOREM 4. If M is suitable for a reduction sequence, then this
reduction sequence is finite.

Proof. 'The same as for Theorem 1. a

Next I describe a primitive recursive finitely branching tree of finite
e-substitutions for a given system F and finite diagrams, and prove the
tree to be well-founded. This will imply that every reduction sequence
together with every sequence of suitable finite diagrams terminates.
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DEFINITION 8. A suitable extension of a diagram M with respect
to an e-substitution S and a system E of critical formulas is any dia-
gram

MIEMU{Ll,...,Lk}

such that (1) literals Ly, ..., Ly are not decided by M, i.e. none is in
M up to negation; (ii) L1, ..., Ly occur up to negation in S(E) or in
a formula S(F|c]) for exF|z] = c in S, and M’ is suitable for S.

The tree T.(FE) is defined as follows. Its nodes contain pairs (S, M)
where S is an e-substitution and M is a finite diagram. The root
of the tree (situated at level 0) contains the pair (0, () with empty
components.

Immediate successors of a pair (S, M) situated at an even level
contain exactly pairs (S, M’) with the same substitution S and M’
being a suitable extension of M with respect to S, E. There are exactly
2F of such extensions.

Immediate successors of a pair (S, M) situated at an odd level con-
tain exactly pairs (S, M) with the same diagram M and S’ being a
result of making a reduction for S.

A pair (S, M) is terminal if (S, M) is the solution for the system
E, that is

SM(E)=T

Note. One can visualize the extension of a pair (S, M) situated
at an even level as a series of cuts over literals L1, ..., L;. Hence at
each stage of construction of the tree the disjunction over all diagrams
Mi, ..., Mg in the final nodes (leaves) at this stage is a tautology.

THEOREM 5. The tree T.(E) is finite.

Proof. Each path in this tree determines a reduction sequence and
a diagram M suitable for this reduction sequence. By the previous
theorem each path is finite, hence the tree is well-founded. Now apply
the Konig Lemma. a

This result implies a version of the Herbrand theorem for e-calculus.

THEOREM 6. For every system E of critical formulas there is a
finite set of e-substitutions

(13) Siy..y Sy
such that the disjunction
(14) SiI(E)V ...V S,(E)

s a tautology.
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Proof. Consider the tree T,(E). By the previous theorem it is
finite. Let

(Sla Ml)a ey (Sp7 Mp)
be all its leaves (final nodes). This means that
SiMi(E)=T foreachi=1,...,p

that is
M; E S;(E) foreachi=1,...,p

By the Note above, the disjunction over all M; is a tautology. This
concludes the proof. a
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