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Overview
Peter Aczel, “The type theoretic interpretation of constructive set
theory”,

I Logic Colloquium ’77

I Brouwer centenary symposium, 1980

Interpretation of CZF in Martin-Löf’s constructive type theory.

Why is it of interest to the philosopher?

I Sets are formed by a set-of operation.

I This yields a novel, pure iterative conception of sets.

I The relation between the notions of iterative set and type is
clarified.

I Set equality is an equivalence relation on an underlying, more
finely individuated domain.

I It gives constructive meaning to set theory.

: 2



Constructive set theory CZF

Similar to classical ZF, but with two main differences:

I Intuitionistic logic.

I Weaker forms of separation and power set axiom.

Nevertheless,
CZF + LEM = ZF
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Constructive Type Theory

I A formal system intended to serve as a foundation for
constructive mathematics.

I Built up from first principles.

I Supplied with detailed meaning explanations, making it into a
language in the proper sense (interpreted language).

Peter Aczel, “The type theoretic interpretation of constructive set
theory”:

I believe that the interpretation of constructive set theory
in type theory can lay claim to give a good constructive
meaning to the set theoretical notions.

The interpretation of a theory T in constructive type theory
provides a constructive justification of T .
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The interpretation in rough outlines

I Constructive type theory is taken for granted.

• In particular, we assume a range of types, including the
natural numbers N, to be available.

I Define a novel type V as the domain of the interpretation.

• The type V will be inductively generated.

I Define a relation of extensional equality,
.

=, and a relation of
membership, ∈, between objects of type V.

I Argue that the axioms of CZF are true in the structure
(V,

.
=,∈).

Our interest is in the structure (V,
.

=,∈) and what it might teach
us about the notion of set.
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A simpler example: hereditarily finite sets

I Finite type theory is taken for granted.
I Define a novel type HF of the hereditarily finite sets.

• The definition takes us out of finite type theory.

I Define a relation of extensional equality,
.

=, and a relation of
membership, ∈, between objects of type HF.
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Finite type theory
Every type is finite, and for every n there is a type of cardinality n.

Formation rules:

⊥ : Fin A : Fin
S(A) : Fin

Introduction rules:

⊥ is empty ∗A : S(A) a : A
σ(a) : S(A)

Define 0 = ⊥, 1 = S(⊥), 2 = S2(⊥),. . . , n = Sn(⊥).

To define a function with domain n it suffices to specify its value
for each of the n objects of n.

For any type A, there is a function RA : ⊥ → A.
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The set-of operation

I Given certain objects, application of the set-of operation
produces the set of them.

I A precise account of the set-of operation requires a precise
account of its operand.

I Naive set theory: the set-of operation applies to a
propositional function P to form the set of objects a for which
P(a) is true.

I The “combinatorial” account: the set-of operation applies to
a list of objects.

I Aczel: the set-of operation applies to a function f to form the
set of objects enumerated by f .

• This presupposes domains for the functions to be defined
on. These are provided by type theory.
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The hereditarily finite sets

The type HF of hereditarily finite sets is inductively generated by
the following rule:

A : Fin f : A→ HF
setof(A, f ) : HF

(HF-intro)

Gloss: given a finite type A and a function f : A→ HF, form the
set of sets enumerated by f .

Alternative notation for setof(A, f ):

{f (a) | a : A}
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Applying the rule HF-intro

A : Fin f : A→ HF
setof(A, f ) : HF

The empty set, ∅, is formed from RHF : ⊥ → HF.

Given sets a1, . . . , an, these can be enumerated by a function
f : n→ HF. Then

setof(n, f ) = {a1, . . . , an}
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Inductive definition

In Kleene’s terminology, (HF-intro) provides a fundamental
inductive definition, by means of which a domain of objects is
introduced.

Another example: the natural numbers.

0 : N n : N
s(n) : N

(N-intro)

On any inductively defined domain, functions may be defined by
induction.

In Kleene’s terminology, such definitions are non-fundamental.
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Strict identity

The criterion of identity for the type HF is the following:

setof(A, f ) ≡ setof(B, g) iff A ≡ B and f ≡ g

This definition accords with the usual pattern of defining criterial
identity in constructive type theory.

But it is not a definition of extensional equality.

Let f : 1→ HF be constantly ∅.
Let g : 2→ HF be constantly ∅.

Then f and g enumerate the same sets (namely ∅), but
setof(1, f ) and setof(2, g) are not ≡-identical.
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Extensional equality

Extensional equality,
.

=, on HF is defined by induction:

setof(A, f )
.

= setof(B, g) iff (∀x : A)(∃y : B)f (x)
.

= g(y) &

(∀y : B)(∃x : A)f (x)
.

= g(y)

Gloss: provided f (a)
.

= g(b) has been defined for arbitrary a : A
and b : B, define setof(A, f )

.
= setof(B, g) as:

For every f (a) there is a g(b) such that f (a)
.

= g(b), and
for every g(b) there is a f (a) such that f (a)

.
= g(b).

This is a double induction on the build-up of objects of HF.
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Bisimulation

Let ≺ be the immediate predecessor relation, f (a) ≺ setof(A, f ).

u
.

= v iff for each x ≺ u there is y ≺ v such that x
.

= y , and

for each y ≺ v there is x ≺ u such that x
.

= y .

Technical terminology:
.

= is the largest bisimulation on (HF,≺).

Historical note: Aczel would use bisimulation also in defining
equality of non-well-founded sets.
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Membership

Membership, ∈, is explicitly defined:

u ∈ v iff there is x ≺ v such that u
.

= x

The following implications are then easily verified:

u ∈ v & v
.

= w =⇒ u ∈ w
u ∈ v & u

.
= w =⇒ w ∈ v

This completes the definition of the structure (HF,
.

=,∈).
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Aczel’s V

Aczel’s V is defined precisely as HF is defined with the sole
difference that many more types are allowed to serve as domain of
the enumerating functions.

A : U f : A→ V
setof(A, f ) : V

(V-intro)

U is a type of types:

⊥, 1

N

A + B

Π(A,C ), Σ(A,C )

: 16



Dedekind infinity of HF and V

On both HF and V one can define a successor function,

suc(x) ≡ “x ∪ {x}”

Extensional
x
.

= y =⇒ suc(x)
.

= suc(y)

Injective
suc(x)

.
= suc(y) =⇒ x

.
= y

Not surjective
¬(suc(x)

.
= ∅)

The function suc thus witnesses that (HF,
.

=) and (V,
.

=) are
Dedekind infinite.
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Axiom of infinity

Define N : N→ V

N(0) ≡ ∅
N(s(n)) ≡ suc(N(n))

= N(n) ∪ {N(n)}

Let ω ≡ setof(N,N).

Then ω witnesses that the Axiom of Infinity is true in the structure
(V,

.
=,∈),

∅ ∈ ω
n ∈ ω =⇒ suc(n) ∈ ω
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Remarks on the interpretation

I The type U is a universe: an inductively defined type of
(codes of) types.

I The types HF and V are examples of a so-called well-ordering
type, W(A,C ).

I Under the Curry–Howard correspondence, U is also a type of
propositions. This is used in the validation of the Axiom of
Restricted Separation.

I The validation of the so-called collection axioms uses
Intensional Axiom of Choice, a theorem of type theory.

I If Extensional Axiom of Choice is added to type theory, all of
ZFC is validated in (V,

.
=,∈).
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Set versus type

The priority of type over sets:

1. The domains of the enumerating functions in (V-intro) are
types.

2. V itself is a type.

The set-theoretic universe, V, is just one type among (infinitely)
many: N, ⊥, N→ N,. . .

This is not a reduction of sets to types. Rather we understand sets
as the objects of a certain inductively defined type V.
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Sets as individuals

Simple type theory, as defined by Church, has just one type, ι, of
individuals.

Constructive type theory is many-sorted: (infinitely) many types of
individuals (= sorts).

V is one such type.

Sets are thus rendered as individuals.
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Iterative set

On a standard account, an iterative set is a member of the
cumulative hierarchy.

The cumulative hierarchy is defined in terms of the power set
operation and the classical notion of ordinal number.

An object in (V,
.

=) is obtained solely by iterating the set-of
operation, starting from the empty set: no need to appeal to a
power set operation.

It thus provides a purer account of the notion of an iterative set.

Note: Replacement is validated in (V,
.

=,∈).
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V versus (V,
.

=)

The type V is equipped with strict (intensional) identity, ≡.

As such it is not a type of sets (no axiom of extensionality).

Sets are objects of the structure (V,
.

=), where
.

= plays the role of
identity.

Similar contrast: Cauchy versus (Cauchy,∼), where ∼ is the
relation of co-convergence.

A structure of the form (A,R), where R is an equivalence relation
on A, is often called a setoid.
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(V,
.

=) as an extensional domain

The criterion of identity in (V,
.

=) is given by a propositional
function on V.

I A propositional function, being a function, needs a domain of
definition.

I Such a domain must be associated with a criterion of identity.

I Hence not every criterion of identity can be given by a
propositional function.

It is natural to call V a fundamental domain and (V,
.

=) a derived
domain.

A derived domain is obtained by extensionalization of a
fundamental domain, where identity is intensional.
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