# Aczel's V and the notion of set

Ansten Klev
Czech Academy of Sciences

Infinity and intensionality seminar Oslo, 11 January 2023

#### Overview

Peter Aczel, "The type theoretic interpretation of constructive set theory",

- ► Logic Colloquium '77
- Brouwer centenary symposium, 1980

Interpretation of CZF in Martin-Löf's constructive type theory.

Why is it of interest to the philosopher?

- Sets are formed by a set-of operation.
- ► This yields a novel, pure iterative conception of sets.
- ► The relation between the notions of iterative set and type is clarified.
- Set equality is an equivalence relation on an underlying, more finely individuated domain.
- It gives constructive meaning to set theory.

## Constructive set theory CZF

Similar to classical ZF, but with two main differences:

- Intuitionistic logic.
- Weaker forms of separation and power set axiom.

Nevertheless,

$$CZF + LEM = ZF$$

## Constructive Type Theory

- A formal system intended to serve as a foundation for constructive mathematics.
- ► Built up from first principles.
- Supplied with detailed meaning explanations, making it into a language in the proper sense (interpreted language).

Peter Aczel, "The type theoretic interpretation of constructive set theory":

I believe that the interpretation of constructive set theory in type theory can lay claim to give a good constructive meaning to the set theoretical notions.

The interpretation of a theory T in constructive type theory provides a constructive justification of T.

## The interpretation in rough outlines

- Constructive type theory is taken for granted.
  - In particular, we assume a range of types, including the natural numbers N, to be available.
- ▶ Define a novel type **V** as the domain of the interpretation.
  - The type V will be inductively generated.
- Argue that the axioms of CZF are true in the structure  $(\mathbf{V}, \doteq, \in)$ .

Our interest is in the structure  $(\mathbf{V}, \doteq, \in)$  and what it might teach us about the notion of set.

## A simpler example: hereditarily finite sets

- Finite type theory is taken for granted.
- ▶ Define a novel type **HF** of the hereditarily finite sets.
  - The definition takes us out of finite type theory.
- Define a relation of extensional equality, ≐, and a relation of membership, ∈, between objects of type **HF**.

## Finite type theory

Every type is finite, and for every n there is a type of cardinality n.

Formation rules:

$$\perp$$
: Fin  $\frac{A : Fin}{S(A) : Fin}$ 

Introduction rules:

$$\perp$$
 is empty  $*_A : S(A)$   $\frac{a : A}{\sigma(a) : S(A)}$ 

Define 
$$\mathbf{0} = \bot$$
,  $\mathbf{1} = S(\bot)$ ,  $\mathbf{2} = S^2(\bot)$ ,...,  $\mathbf{n} = S^n(\bot)$ .

To define a function with domain  $\mathbf{n}$  it suffices to specify its value for each of the n objects of  $\mathbf{n}$ .

For any type A, there is a function  $R_A: \bot \to A$ .

### The set-of operation

- Given certain objects, application of the set-of operation produces the set of them.
- ► A precise account of the set-of operation requires a precise account of its operand.
- Naive set theory: the set-of operation applies to a propositional function P to form the set of objects a for which P(a) is true.
- ► The "combinatorial" account: the set-of operation applies to a list of objects.
- Aczel: the set-of operation applies to a function f to form the set of objects enumerated by f.
  - This presupposes domains for the functions to be defined on. These are provided by type theory.

## The hereditarily finite sets

The type **HF** of hereditarily finite sets is inductively generated by the following rule:

$$\frac{A : \mathsf{Fin} \qquad f : A \to \mathsf{HF}}{\mathsf{setof}(A, f) : \mathsf{HF}}$$
 (HF-intro)

Gloss: given a finite type A and a function  $f: A \to \mathbf{HF}$ , form the set of sets enumerated by f.

Alternative notation for **setof**(A, f):

$$\{f(a) \mid a : A\}$$

## Applying the rule **HF**-intro

$$\frac{A : \mathbf{Fin} \qquad f : A \to \mathbf{HF}}{\mathbf{setof}(A, f) : \mathbf{HF}}$$

The empty set,  $\emptyset$ , is formed from  $R_{HF}: \bot \to HF$ .

Given sets  $a_1, \ldots, a_n$ , these can be enumerated by a function  $f : \mathbf{n} \to \mathbf{HF}$ . Then

$$\mathbf{setof}(\mathbf{n},f)=\{a_1,\ldots,a_n\}$$

: 10

#### Inductive definition

In Kleene's terminology, (**HF**-intro) provides a *fundamental* inductive definition, by means of which a domain of objects is introduced.

Another example: the natural numbers.

$$0: \mathbf{N} \qquad \frac{n: \mathbf{N}}{\mathbf{s}(n): \mathbf{N}} \qquad (\mathbf{N}-intro)$$

On any inductively defined domain, functions may be defined by induction.

In Kleene's terminology, such definitions are non-fundamental.

## Strict identity

The criterion of identity for the type **HF** is the following:

$$setof(A, f) \equiv setof(B, g)$$
 iff  $A \equiv B$  and  $f \equiv g$ 

This definition accords with the usual pattern of defining *criterial identity* in constructive type theory.

But it is not a definition of extensional equality.

Let  $f: \mathbf{1} \to \mathbf{HF}$  be constantly  $\emptyset$ .

Let  $g: \mathbf{2} \to \mathbf{HF}$  be constantly  $\emptyset$ .

Then f and g enumerate the same sets (namely  $\emptyset$ ), but setof(1, f) and setof(2, g) are not  $\equiv$ -identical.

### Extensional equality

Extensional equality,  $\doteq$ , on **HF** is defined by induction:

$$\mathbf{setof}(A, f) \doteq \mathbf{setof}(B, g) \quad \text{iff} \quad (\forall x : A)(\exists y : B)f(x) \doteq g(y) \& \\ (\forall y : B)(\exists x : A)f(x) \doteq g(y)$$

Gloss: provided  $f(a) \doteq g(b)$  has been defined for arbitrary a : A and b : B, define  $setof(A, f) \doteq setof(B, g)$  as:

For every f(a) there is a g(b) such that  $f(a) \doteq g(b)$ , and for every g(b) there is a f(a) such that  $f(a) \doteq g(b)$ .

This is a double induction on the build-up of objects of **HF**.

#### Bisimulation

Let  $\prec$  be the immediate predecessor relation,  $f(a) \prec \mathbf{setof}(A, f)$ .

 $u \doteq v$  iff for each  $x \prec u$  there is  $y \prec v$  such that  $x \doteq y$ , and for each  $y \prec v$  there is  $x \prec u$  such that  $x \doteq y$ .

Technical terminology:  $\doteq$  is the largest bisimulation on (**HF**,  $\prec$ ).

Historical note: Aczel would use bisimulation also in defining equality of non-well-founded sets.

: 14

## Membership

Membership,  $\in$ , is explicitly defined:

$$u \in v$$
 iff there is  $x \prec v$  such that  $u \doteq x$ 

The following implications are then easily verified:

$$u \in v \& v \doteq w \implies u \in w$$
  
 $u \in v \& u \doteq w \implies w \in v$ 

This completes the definition of the structure ( $\mathbf{HF}, \doteq, \in$ ).

#### Aczel's V

Aczel's  $\mathbf{V}$  is defined precisely as  $\mathbf{HF}$  is defined with the sole difference that many more types are allowed to serve as domain of the enumerating functions.

$$\frac{A: \mathbf{U} \qquad f: A \to \mathbf{V}}{\mathbf{setof}(A, f): \mathbf{V}}$$
 (V-intro)

**U** is a type of types:

Ν

$$A + B$$

$$\Pi(A, C)$$
,  $\Sigma(A, C)$ 

## Dedekind infinity of **HF** and **V**

On both **HF** and **V** one can define a successor function,

$$\mathsf{suc}(x) \equiv "x \cup \{x\}"$$

Extensional

$$x \doteq y \implies \operatorname{suc}(x) \doteq \operatorname{suc}(y)$$

Injective

$$\operatorname{suc}(x) \doteq \operatorname{suc}(y) \implies x \doteq y$$

Not surjective

$$\neg(\operatorname{suc}(x) \doteq \emptyset)$$

The function **suc** thus witnesses that  $(\mathbf{HF}, \doteq)$  and  $(\mathbf{V}, \dot{=})$  are Dedekind infinite.

: 17

### Axiom of infinity

Define  $N: \mathbf{N} \to \mathbf{V}$ 

$$N(0) \equiv \emptyset$$
 $N(\mathbf{s}(n)) \equiv \mathbf{suc}(N(n))$ 
 $= N(n) \cup \{N(n)\}$ 

Let  $\omega \equiv \mathbf{setof}(\mathbf{N}, N)$ .

Then  $\omega$  witnesses that the Axiom of Infinity is true in the structure  $(\mathbf{V}, \doteq, \in)$ ,

$$\emptyset \in \omega$$

$$n \in \omega \implies \mathsf{suc}(n) \in \omega$$

: 18

### Remarks on the interpretation

- ► The type U is a universe: an inductively defined type of (codes of) types.
- ▶ The types **HF** and **V** are examples of a so-called well-ordering type,  $\mathbf{W}(A, C)$ .
- Under the Curry—Howard correspondence, U is also a type of propositions. This is used in the validation of the Axiom of Restricted Separation.
- The validation of the so-called collection axioms uses Intensional Axiom of Choice, a theorem of type theory.
- If Extensional Axiom of Choice is added to type theory, all of ZFC is validated in (V, =, ∈).

## Set versus type

The priority of type over sets:

- 1. The domains of the enumerating functions in (**V**-intro) are types.
- 2. V itself is a type.

The set-theoretic universe, V, is just one type among (infinitely) many: N,  $\bot$ ,  $N \to N$ ,...

This is not a reduction of sets to types. Rather we understand sets as the objects of a certain inductively defined type V.

#### Sets as individuals

Simple type theory, as defined by Church, has just one type,  $\iota$ , of individuals.

Constructive type theory is many-sorted: (infinitely) many types of individuals (= sorts).

**V** is one such type.

Sets are thus rendered as individuals.

#### Iterative set

On a standard account, an iterative set is a member of the cumulative hierarchy.

The cumulative hierarchy is defined in terms of the power set operation and the classical notion of ordinal number.

An object in  $(\mathbf{V}, \doteq)$  is obtained solely by iterating the set-of operation, starting from the empty set: no need to appeal to a power set operation.

It thus provides a purer account of the notion of an iterative set.

Note: Replacement is validated in  $(\mathbf{V}, \doteq, \in)$ .

# V versus $(V, \doteq)$

The type  ${f V}$  is equipped with strict (intensional) identity,  $\equiv$ .

As such it is not a type of sets (no axiom of extensionality).

Sets are objects of the structure  $(\mathbf{V}, \doteq)$ , where  $\dot{=}$  plays the role of identity.

Similar contrast: Cauchy versus (Cauchy,  $\sim$ ), where  $\sim$  is the relation of co-convergence.

A structure of the form (A, R), where R is an equivalence relation on A, is often called a *setoid*.

## $(V, \doteq)$ as an extensional domain

The criterion of identity in  $(\mathbf{V}, \doteq)$  is given by a propositional function on  $\mathbf{V}$ .

- A propositional function, being a function, needs a domain of definition.
- Such a domain must be associated with a criterion of identity.
- Hence not every criterion of identity can be given by a propositional function.

It is natural to call  ${\bf V}$  a fundamental domain and  $({\bf V},\dot=)$  a derived domain.

A derived domain is obtained by extensionalization of a fundamental domain, where identity is intensional.