VOLKER PECKHAUS

HUGH MACCOLL AND THE
GERMAN ALGEBRA OF LOGIC

In this paper the early reception of Hugh MacColl’s logical
system up to the 1890s, by the German algebraist of logic, Ernst
Schréder, is investigated. In his monumental Vorlesungen dber
die Algebra der Logik, Schroder refers to MacColl as one of his
most important precursors. It will be shown that MacColl was
a respected member of the logical community of his time, taking
his position in the competition for the best (most effective) logi-
cal system. Schroder’s comparison of the procedures for solving
logical problems provided by different logical systems, in partic-
ular the different ways of solving Boole’s famous “Example 57,
is discussed. This discussion will demonstrate the importance of
the organon aspect of symbolic logic. Finally some conclusions
are drawn concerning later neglect of MacColl’s logic.

There is no doubt that Hugh MacColl (1837-1909) was incapable
of pioneering a specific tradition in logic. Today, however, some of the
particulars of his “Calculus of Equivalent Statements” are regarded as
ingenious anticipations of innovations which were only much later in-
troduced to logic. Thus, for a considerable time he was not counted
among the important pioneers of symbolic logic. It is, however, hasty
to infer from the lack of tradition that MacColl’s logical work was ig-
nored by his contemporaries. This can be shown by an investigation of
the reception of this work in the German algebra of logic, which is rep-
resented (almost exclusively) by Ernst Schroder (1841-1902). His mon-
umental Vorlesungen tiber die Algebra der Logik' shows that MacColl
was a respected member of the international community of logicians in
the late 19th and the early 20th century. His logic took part in the
competition of logical systems. In this competition the conceptions of

!This work was published in four parts, of which one appeared posthumously:
Schroder 1890, 1891, 1895, and 1905, these parts reprinted as Schroder 1966.
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the German mathematicians Ernst Schroder and Gottlob Frege (1848—
1925), the American logicians Charles S. Peirce (1839-1914) and Chris-
tine Ladd-Franklin (1847-1930), the British, William Stanley Jevons
(1835-1882) and John Venn (1834-1923), the Polish Russian Platon
Sergeevich Poretskii (1846-1907), and others, concurred. The main
task was to solve logical problems, i.e. to schematize them with the
help of logical formulas and dissolve them to the unknowns. How the
solution was found within the different systems facilitated comparative
evaluation of the calculi with respect to their efficiency, elegance and
economy. It is obvious that the results of such a comparison could
affect the further development of a calculus.

In this paper I will deal with this competition concerning the best
logical system from the perspective of the German algebra of logic. How
MacColl’s logic was received may reveal clues as to why his system
never found the recognition it deserved, although it was highly, but
critically, esteemed by his contemporaries.?

1. FRIENDLY CONTESTS

The competition of logical systems concerned not their theoretical
perfection, but practicability. In accordance with the organon concep-
tion of rationalistic logic, logical systems were regarded as devices for
solving logical and mathematical problems. Logical systems had to be
easily applicable. MacColl wrote, for example, in a comment on John
Venn’s diagrammatic method:

Where is the formidable array of 6 x 25 (or 384) letters which Mr. Venn, unless
I misunderstood his words, supposes the logician obliged to face as a necessary
preliminary to all inference in every problem requiring six letters? Whether
Dr. Boole’s or Prof. Jevons’s method can fairly be charged with imposing this
heavy labour I am not prepared to say; but my method certainly does not
impose it. (MacColl 1880, p. 171)

MacColl’s criterion of comparison was the degree of complexity of logi-
cal problems which could be mastered by the logical system. The com-
petitors agreed that solving problems was not a simple task. Therefore
they quickly looked for help from mechanical devices. In the second

2In writing this paper I was able to benefit from preparatory work done by
Anthony Christie in the Erlangen research project “Case Studies towards a Social
History of Formal Logic”, not brought to publication. In particular, it was Christie’s
idea to interpret the reception of MacColl’s writings with respect to the late 19th
century competition of logical systems. Cf. the unpublished typescript, Christie
1986. For the research project see Peckhaus 1986, Padilla-Galvez 1991, and Thiel
1996.
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half of the 19th century not only programmable calculating automata,
but also logical machines, were developed.? With the help of his logical
piano, for example, William Stanley Jevons was able to solve mechan-
ically inferences with four terms.?

MacColl advocated public competition. In his review of William
Stanley Jevons’s Studies in Deductive Logic (1880), he challenged the
author outright:

Friendly contests are at present being waged in the “Educational Times”
among the supporters of rival logical methods; I hope Prof. Jevons will not
take it amiss if I venture to invite him to enter the lists with me and there
make good the charge of “anti-Boolean confusion” which he brings against
my method. (MacColl 1881, p. 43)

MacColl referred to a discussion taking place in the “Mathematical
Questions” column of the Educational Times, the journal of the British
College of Preceptors (cf. Grattan-Guinness 1992). It is astonishing
that logical problems found their way into a journal of this type, aimed
at a broader audience. But the Educational Times was not a singular
case. The unusual interest in the new logic in Great Britain after
Boole’s death led to a great number of contributions, reviews and letters
on formal logic in science journals like Nature (cf. Christie 1990) and
in other national and regional journals.®

2. THE RECEPTION BY ERNST SCHRODER

From the very beginning the learned competition concerning the
best system of logic had an international flavor. The knowledge of
the new logical systems in Great Britain was carried into the world
primarily through the writings of William Stanley Jevons. His Princi-
ples of Science (1874) in particular worked as a catalyst. Furthermore,
the effect of Alexander Bain’s (1818-1903) Logic (1870) should not be
underestimated. It was devoted to John Stuart Mill’s inductive logic,
but contained a section on Boole’s symbolic logic which stimulated the
emergence of research on symbolic logic in Poland.® It is safe to as-
sume that even MacColl got to know Boole’s algebra of logic via Bain’s

3The Analytical Engine of Charles Babbage (1791-1871) is an example, although
Babbage was not able to bring it to full operation (cf. Hyman 1982).

4Ct. Jevons 1870 and Jevons 1874, pp. 107-114.

5Samuel Neil (1825-1901), for example, published in the years 1864 and 1865 a
series of articles on “Modern Logicians” in his journal The British Controversialist
and Literary Magazine, among them comprehensive biographies and reviews on
John Stuart Mill (18061873, cf. Neil 1864) and George Boole (1815-1864, cf. Neil
1865).

In 1878 Bain’s Logic was translated into Polish. Cf. Batég and Murawski 1996.
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logic. In the second paper on “The Calculus of Equivalent Statements”
(1877/78b), he quoted Boole according to Bain’s presentation.”

I have shown elsewhere (cf. Peckhaus 1997) that the roots of
Schroder’s algebra of logic are to be found in the German abstract
algebraical conceptions of his time, but not in Boole’s algebra of logic.
Schroder relied on the general doctrines of forms of Hermann Giinther
Grafmann (1809-1877, cf. Grafmann 1844) and Hermann Hankel
(1839-1873, cf. Hankel 1867), and on Robert Gramann’s (1815-1901)
symbolic logic (Grafimann 1872). However, he knew of Boole’s calculus
and acknowledged its priority from 1874/75 on. Schroder’s principal
works were the three volumes of his Vorlesungen dber die Algebra der
Logik published between 1890 and 1905. In the first volume (1890), he
primarily treated the class calculus after having founded a more gen-
eral calculus of domains. The second volume, of which a second part
appeared posthumously (1891, 1905), was devoted to the propositional
calculus. In these two volumes MacColl was, after Charles S. Peirce,
the most frequently mentioned author. Peirce’s dominance is under-
standable, insofar as Schroder, in forming his calculi, followed Peirce’s
model very closely as it was developed in the two papers “On the Al-
gebra of Logic” (1880, 1884). But Schroder always compared Peirce’s
considerations with the early parts of MacColl’s series of papers “The
Calculus of Equivalent Statements” published between 1877 and 1880,
and he granted MacColl priority when he had anticipated Peirce’s re-
sults. As far as Schréder was concerned, MacColl’s calculus held the
status of a preliminary stage of Peirce’s algebra of logic.

There are three aspects in Schroder’s reception of MacColl’s logic
which seem to be especially interesting and therefore deserve closer
examination:

1. The different efficiencies of the calculi in eliminating terms and
resolving logical formulas could provide a measure for the quality
of these calculi. Schréder compared his own procedure, derived
from Boole’s, with Peirce’s, the latter being regarded as a natural
way of proceeding. He discussed MacColl’s method extensively as
a preliminary stage.

2. Schroder explicitly accepted MacColl’s priority in formulating a
propositional logic. In most cases he spoke of a “MacColl-Peircean
propositional logic.” Nevertheless, he criticized both authors’ at-

"Elsewhere (MacColl 1878/79, p. 27), he mentions “the kindness of the Rev.
Robert Harley for the loan of Boole’s ‘Laws of Thought’.” Referring to Boole’s
An Investigation of the Laws of Thought (1854), he declares that he found many
differences, but also numerous points of contact.
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tempts to found logic on propositional logic. This conception, he
argued, is less general than his own, because he founded the calculus
of propositions on the calculi of domains and classes.

3. Schroder stressed the MacColl-Peircean priority of defining material
implication, and adopted this definition in his own propositional
logic.

2.1. Solution of logical problems

Schroder treated the solution of logical problems in the last two
paragraphs of the first volume of his Vorlesungen tiber die Algebra der
Logik (1890, §§ 25, 26). He characterized the type of problems discussed
in the beginning of § 26 as follows:

The preceding discussion only concerned problems whose data can be ex-
pressed by subsumptions (or equations [ ... ]) between such classes or func-
tions of such in the identical [i.e. Boolean] calculus, and whose solution can
also be expressed by propositions of this form. It was important to eliminate
certain classes from the data of the problem, to calculate others from these
data [ ... ], i.e. to find their subjects and predicates which can be described
with the help of the remaining classes. (Schroder 1890, p. 559)

Here Schroder refers to the thirty problems which he solved in the
preceding paragraph with the help of his class calculus as far as it
was developed at that stage. He then went on to compare his results
with solutions provided by alternative calculi. He mentioned Peirce,
who had listed in his paper “On the Algebra of Logic” five logical
methods in chronological order, by Boole, Jevons, Schroder, MacColl
and himself (Peirce 1880, p. 37). Schroder expressed the opinion that
these five methods could be reduced to three, because his own was
a modified version of Boole’s, which thus became obsolete (Schroder
1890, p. 559). Furthermore, the methods of MacColl and Peirce could
be combined, because MacColl had paved the way for Peirce’s (p. 589).

Schréder chose a problem first published by Boole as a tool for
testing the performance of the calculi. It held some prominence among
the mathematical and philosophical logicians of the time because of its
complexity.® Boole’s formulation of the problem is quoted in full, but
the different solutions are only sketched:’

8 “Example 5” in Boole 1854, pp. 146-149.

9Boole 1854, p. 146, cited by Schroder in translation with some revisions (1890,
p. 522). This problem was also treated by Hermann Lotze in his “Anmerkung tiber
logischen Calctil” (Lotze 1880, pp. 265-267). Lotze criticized Boole’s claim that
his solution of the problem shows the advantage of his calculus over syllogistics.
Lotze agreed with Boole that it was senseless to try to solve this problem syllo-
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Ex. 5. Let the observation of a class of natural productions be supposed to
have led to the following general results.

1st, That in whichsoever of these productions the properties A and C' are
missing, the property F is found, together with one of the properties B and
D, but not with both.

2nd, That wherever the properties A and D are found while E' is missing,
the properties B and C' will either both be found or both be missing.

3rd, That wherever the property A is found in conjunction with either B
or F, or both of them, there either the property C' or the property D will be
found, but not both of them. And conversely, wherever the property C or D
is found singly, there the property A will be found in conjunction with either
B or E, or both of them.

Let it then be required to ascertain, first, what in any particular instance
may be concluded from the ascertained presence of the property A, with
reference to the properties B, C, and D; also whether any relations exist
independently among the properties B, C, and D. Secondly, what may be
concluded in like manner respecting the property B, and the properties A, C,
and D. (Boole 1854, p. 146)

In his translation Schroder labelled the data «, 8, and ~, and he split
the two questions into four:

Let it be required to ascertain,

first, what in any particular instance may be concluded from the ascer-
tained presence of the property A, with reference to the properties B, C, and
D,

secondly, also to decide whether any relations exist independently from

the presence or absence of the other properties among the presence or absence
of the properties B, C, and D (and, if yes, which?),

thirdly, what may be concluded in like manner from the existence of the
property B with respect to the properties A, C', and D (and vice versa, when
the existence or absence of the property B can be inferred from that of the
properties of the latter group),

fourthly, to state what follows for the properties A, C', D as such.
(Schroder 1890, p. 522)

gistically, but did not regard the calculatory procedure as obvious. He preferred
a combinatorial way which he obviously adopted from Jevons. This combinatorial
way “presents itself automatically as the more appropriate” (Lotze 1880, p. 266).
Jevons’s combinatorial procedure was a subject of correspondence between Lotze
and Schroder. Schroder reported on this correspondence, criticizing Lotze’s deval-
uation of the calculatory method (cf. Schroder 1890, pp. 566-568). Gottlob Frege,
like Lotze, criticized the artificiality of this problem in his comparison of the Be-
griffsschrift with the Boolean calculus (Frege 1983, p. 52). Nevertheless, he also
tried to solve the problem. Frege’s pathbreaking solution is thoroughly discussed
by Peter Schroeder-Heister (1997). A favorable treatment of this problem can be
found in Wilhelm Wundt’s logic (1880, p. 357). Gottfried Gabriel suggested in 1989
the examination of the different solutions in order to obtain criteria for a compar-
ison of different systems of logic, i.e. traditional logic, algebra of logic, and Frege’s
Begriffsschrift(Gabriel 1989, p. XXIII).
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Schroder’s notations will be used to sketch out his solution. Lowercase
Latin letters stand for classes; their properties are marked with respec-
tive capitals. Logical addition (adjunction) is marked by +, logical
multiplication (conjunction) by juxtaposition. Negation is symbolized
by an appended negation stroke, e.g. a; stands for the negation of a.
The subsumption symbol < indicates class inclusion in the class cal-
culus. The class symbols 0 and 1 stand for the empty class and the
universal class, respectively. The functional symbol f(x) represents in
the identical (i.e. Boolean) calculus a complex expression containing x
(or x;) and other symbols connected with the help of basic logical op-
erations, identical multiplication, addition and negation (cf. Schroder
1890, p. 401). Schréder’s solution will be outlined in as far as it is
necessary to compare it with the alternative solutions discussed.

In an initial step Schroder presented the data, i.e. the conditions
a—y, as subsumptions or equations. In Schroder’s calculus, equality is
derived from subsumption: a = b stands for a subsumption relation be-
tween the terms a (“subject”) and b (“predicate”) which is valid in both
directions at the same time. a = b is thus defined as (a < b)(b < a).
In Schroder’s symbolism the data a—y can be formalized as follows:

a (71@] é (bd\ + b\d)e
(1) B ade, < be+be
v: alb+e) = cdi+cad.

These formulas contain the class symbol e as related to the property F,
which then has to be eliminated because it does not affect the solutions
of the questions. In order to eliminate this class symbol, Schroder put
the equations (1) to 0 on the right hand side, and finally combined
these three equations by conjunction into one. For this purpose he
could use two theorems proven earlier:!°

38 (a € b) = (ab=0)
and
39« (a ="5b) = (ab + ab=0).

After combining the modified premises the following equation results:

CL\C\(bd + b\d\ + 6\) + ade‘(bc‘ + b\C)—F
+a(b+e)(cd+ cd) + (a+ be)(cdi+ cd) =0.

108chréder erroneously mentions Theorem 39, instead of 39 which allows, how-
ever, an equation to be brought to 1.
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Several steps of calculation are required for the elimination of e. They
result in the formula

G(Cd + bC\d\) + a‘(cd\ + C\d + b\c\d\) =0.

This formula is the starting point for further eliminations and reso-
lutions of certain class symbols, finally leading to an answer for the
questions.

Schroder stressed the similarity of his method with that of Boole,
which he considered, however, to be “definitely settled” because of his
modifications. As far as Schroder was concerned, Boole’s method was
therefore only of historical interest. Its disadvantages resulted from
the lack of a sign for negation—Boole had to write 1 — x for x,—
and from the interpretation of the logical “or” as an exclusive “or”.
The inadequacy of Boole’s language led to logically uninterpretable
expressions in the course of calculating logical equations according to
the model of arithmetic.

Schroder started his discussion of alternatives with Jevons’s method
which he called “without art” (“kunstlos”), although it was the “near-
est at hand or most unsophisticated”. Jevons proposed this “Crossing-
off procedure” (“Ausmusterungsverfahren”) in his Pure Logic (1864).
According to Schréder, it consisted in

writing down for all classes mentioned in the formulation of the problem all the
possible cases which can be thought of with respect to the presence or absence
of one in relation to another, then crossing off all cases which are excluded
from the thinkable combinations by the data of the problem as inadmissable,
and trying to pick out the answers to the questions posed by the problem
from the remaining ones. (Schréder 1890, p. 560)

Schroder applied Jevons’s method to Boole’s problem (1890, pp. 562
566). It contained five class symbols; therefore 25 = 32 combinations
had to be considered, of which eleven are valid. Schroder criticized the
complexity of the combinatorial method, which grows with the square
of the number of class symbols occurring. He furthermore claimed that
the procedure is not really calculatory, but that it is based instead on
a “mental comparison” of combinations and premises (pp. 567-568).
Schréder also discussed the graphical extension of this method pre-
sented by John Venn in his Symbolic Logic of 1881 (Schroder 1890,
pp. 569-573). Venn symbolized the relations between the extensions of
classes if two or three class symbols are involved by circles, by ellipses
with four class symbols, and by ellipses together with a ring in the
form of a rhombus with five class symbols. The procedure is similar to
Jevons’s crossing-off method, because the fields not present according
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to the data of the problem are erased by hatching them. With respect
to the complexity of the problems which can be treated, Venn’s proce-
dure was even more restricted than Jevons’s, because the schemes for
symbols of more than five classes become rather intricate.!' Schréder
admitted that Venn’s method had the advantage that every logical
problem which could be presented in an intuitive form could be solved
as soon as it was symbolized with the help of the graphical scheme.
The scheme proposed by Venn for five class-symbols is shown on the
left hand side of the figure below. On the right hand side the solution of
the Boolean problem is given.!? The exterior field 32 should be hatched
as well. This has not been done for the sake of descriptiveness.?

32

1 Schréder 1890, p. 569. Today, however, graphical procedures have been devel-
oped with which greater complexities can be handled.

12Schréder used the following algorithm for numbering the fields of the Venn
diagram.

0 O Ui W N

e e e e e e e B
= e e e | O
PO O OO FO
SO F OO
O OO ORI

3210 0 0 0 O

I thank Peter Bernhard (Erlangen) for sharing this information.
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While Schroder was critical of the methods of Jevons and Venn,
he praised those of MacColl and Peirce for being equal to his own
in their efficiency (1890, p. 560). He illustrated the relation between
the different methods with the following metaphor: While he himself
ties the different skeins of premises into a single bale (i.e. the united
equation) and then hacks his way through it, Peirce separates each skein
into thin threads and cuts them individually or binds them together
again if necessary. Jevons, on the other hand, would make chaff and
banter of the whole thing.!'* If one modifies Peirce’s procedure so that
the clues are separated only as far as is needed to isolate the symbols
for eliminations and the unknowns, it will come close to MacColl’s.
Schroder acknowledged that the variants of MacColl and Peirce were
natural and simple, but criticized their lengthiness (1890, p. 573).

Schroder reconstructed Peirce’s method as a sequence of six steps
(“Prozesse”) (1890, pp. 574-584). He followed Peirce’s own presenta-
tion (cf. 1880, pp. 37—42).

1. In an initial step the premises are expressed as subsumptions.

2. Then every subject (the term on the left hand side of a subsump-
tion) is developed as a sum, every predicate (the term on the right
hand side) as a product, using the schemes

444 f@) = fz+ f0)x and
44, f@) = {f0)+zp{f(1)+a}.

3. In the third step all complex subsumptions are reduced, e.g.
s+ +s"+... < ppp. ..

into the subsumptions

sE€ps<yp,s<p ...,
s <ps<psd<p ...,
"€ p s €yl €y

13Schréder corrects the solution given by Venn (Venn 1881, p. 281) by hatching
field 24. Venn acknowledged this correction in the second edition of his Symbolic
Logic (1894, p. 352, n. 1).

14“Bei dieser wurden die verschiedenen Kniuel der Primissen oder Data des Pro-
blems erst fest zu einem einzigen Knoten geschiirzt (der vereinigten Gleichung) und
dieser dann durchhauen (bei der Elimination).

Beim Peirce’schen Verfahren aber werden jene Knéauel in ihre diinnsten Faden
auseinandergeleft und die erforderlichen einzeln zerschnitten (oder auch neu nach
Bedarf verkniipft)—wogegen die Jevons’sche Methode sogleich ein Hécksel aus dem
Ganzen machte!” (Schroder 1890, p. 573)
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4. The fourth step is devoted to the necessary eliminations.

5. In the fifth step all the terms, where the unknown x can be found
at subject or predicate position, are picked up, and finally ...

6. ... united in the last step. With the help of the resulting formula
the unknown can be calculated.

Schroder saw the advantages of Peirce’s method over Boole’s in the fact
that it operates with subsumptions and not with equations, and that it
preserves the subject-predicate structure, which “thoroughly matches
the judging functions of ordinary reasoning” (1890, p. 584)—but these
are advantages in Schroder’s method as well. Peirce’s method has the
further advantage that it is not necessary to bring the equations to zero
on the right hand side and then to unite them to one single equation.

Schroder closed his considerations on the class calculus (1890, pp.
589-592) with a discussion of MacColl’s method. He stated that
MacColl invented this method independently, but nevertheless rather
belatedly, in order to solve the problems of the Boolean calculus. It
differed, however, not as much from the modified Boolean method (i.e.,
Schroder’s method) as MacColl himself thought. Schroder stressed that
he agreed with Venn, who had written in his assessment (Venn 1881,
p. 37; 1894, p. 492) that MacColl’s symbolical method is “practically
identical with those of Peirce and Schroder.”

This assessment is accurate if one regards MacColl’s own evaluation
of the differences between his system and those of Boole and Jevons.
In the third part of the series of papers on “The Calculus of Equivalent
Statements”, he gave a list of the points of difference:

1. With me every single letter, as well as every combination of letters, always
denotes a statement.

2. T use a symbol (the symbol :) to denote that the statement following it is
true provided the statement preceding it be true.

3. T use a special symbol-—namely, an accent—to express denial; and this
accent, like the minus sign in ordinary algebra, may be made to affect a
multinomial statement of any complexity. (MacColl 1878/79, p. 27)

Relating implication and subsumption, the latter being the class logical
equivalent of the former, MacColl presented important modifications
to the calculi of Boole and Jevons which were later also introduced by
Schroder. It is noteworthy that MacColl did not mention his use of
the inclusive “or”. The reason may be that MacColl, in the context of
the quoted passage, paralleled the calculi of Boole and Jevons, using
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Jevons’s Pure Logic (1864), where the exclusive “or” had already been
replaced by the inclusive “or”.

It is a matter of course that Schréder recognized that MacColl’s for-
mulas emerged from the propositional calculus, the “calculus of equiv-
alent statements”, in which the symbols 0 and 1 were not class symbols
but interpreted as truth values. Schroder discussed this method in his
more general class logic because MacColl also treated the Boolean class
logical example 5 (cf. MacColl 1878/79, pp. 23-25).

According to Schroder’s analysis, MacColl’s solution was based on
the two equations named “rule 22”7 (cf. MacColl 1878/79, p. 19):

af(z) = zf(1); 2'f(z) = 2'£(0).

Schroder had dicussed these equations as “theorems of MacColl’s” at
an earlier stage in his Vorlesungen (Schroder 1890, § 19, p. 420).1°

Schroder regarded it as an advantage of MacColl’s procedure that
the premises were not united. In this point, he stated, MacColl was
a precursor of Peirce. But he denied further advantages over his or
Peirce’s method, for example with respect to printing economy, a better
survey, or more comfort in working (1890, pp. 591-592).

It is curious that Schroder returned to MacColl’s method in the
second volume of his Vorlesungen, which is devoted to the calculus of
propositions. There he retracted his assessment that MacColl’s solu-
tion was not really original (1891, p. 391). Schroder then stated that
MacColl’s method, as presented above, was only a scheme. In fact,
Schroder said, MacColl had used another method, which was indeed
original and advantageous. Schroder sketched it as follows (1891, pp.
304-305):

In a given product of propositions F'(z,y), y is to be eliminated and
x is to be calculated. The following four implications are used

ry < F(1,1) | zy =< F(0,1)
Y, é F(].,O) LY é F(0,0)

By addition and using the theorems x = zy + zy, and x = zyy + 2y, ¥
can be eliminated, resulting in

< F(1,1)+ F(1,0) | 2 < F(0,1) + F(0,0).
By contraposition the solutions can be given

F\(1,1)F(1,0) < z | F\(0,1)F(0,0) < z.

15Tn MacColl’s notation the apostrophe denotes negation. MacColl himself said
that he used the implications x f(x) : f(1), 2’ f(z) : f(0) named as rule 23.
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2.2. Calculus of propositions

The fact is often overlooked that Schroder, in the second volume of
his Vorlesungen, presented a highly elaborate propositional and predi-
cate logic, which was not motivated by Frege. He adopted the quanti-
fiers of Peirce and Oscar Howard Mitchell (1851-1889), using a sum and
product notation. In the hierarchy of Schréderian logic, propositional
logic was only in third position. Schréder started with a calculus of
domains, consisting of manifolds of elements. He spoke of a class cal-
culus only if these elements could be individuated and combined to
form classes. It was a further specialization if the calculus concerned
propositions (judgements or “statements”). With this architecture in
mind, it is reasonable for Schroder to reproach MacColl and Peirce for
putting the cart before the horse in founding the logical calculus on
the calculus of propositions. His hierarchy, Schroder stressed, had the
advantage of being more general, and it was also better in didactical
respects, because it was not necessary to have the complete syllogistical
apparatus at hand from the beginning. He compared the difficulties of
reading Peirce’s papers on logic (his argument was, of course, also valid
for MacColl’s papers) with the difficulties of a student, who “should
learn a language which is unknown for him from a grammar which is
written in the same language” (1891, p. 276).

2.8. Material implication

In the algebraic view, formulas and symbols in logic are interpreted
in different ways, depending on the different contexts of application.
The subsumption, which is interpreted in the class calculus as an “in-
tegrative operation” (“Einordnung”) leading to the equality or subordi-
nation of classes, becomes an implication in the propositional calculus.
In the identical calculus Schréder defined subsumption as material im-

plication
(A< B)=(A+B),

and interpreted the formula as follows: “The ‘validity class’ of the sub-
sumption A < B is the class of occasions, during which A is not valid
or Bisvalid” (Schroder 1891, p. 69). But he differed from Peirce before
him, in that he obtained the equation by identical transformations:

(A€ B)=(AB,=0) = {(AB), =1} = (A+ B=1)= A+ B.

The dotted 1 stands for the truth value “true”. Schroder used the
term A = 1 more exactly to express that the proposition A is always,
at any time, and on all occasions, valid. Marking the 1 with a dot
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is necessary to distinguish it from the arithmetical 1, which occurs in
quantifications over a numerical index.

Schroder granted the priority of material implication to MacColl
and Peirce. It is astonishing that MacColl gave a far more modern
interpretation of the formulas, ten years before Schroder. In his inter-
pretation, A = 1 means that the statement A is true; A = 0 that it
is false (1877/78a, p. 9). The expression A : B means that statement
A implies statement B, i.e. in any case if A is true, then B is true
(1877/78b, p. 177).

I would finally like to suggest that MacColl didn’t grasp the alge-
braic approach of Schroder and Peirce. This became obvious when he
criticized the opinion that Peirce’s operation of illation and Schroder’s
subsumption were equivalent to his implication, whereas, according
to his opinion, these operations only denote class inclusion (MacColl
1906, § 74). He did not realize that in the Peirce-Schroderian algebra of
logic, symbols for operations and for relations between variables were
only denoted in a schematic way. The meaning of the symbols thus
depended on the meaning of the variables.

3. CONCLUSION

As far as Schroder was concerned, MacColl appeared to be a suc-
cessor of Boole’s in his algebra of logic who, unlike Jevons, kept a log-
ical notation closely analogous to mathematics, but who, like Jevons,
was also able to avoid the limitations of Boole’s logic. In combining
Boolean Algebra (which was founded by Jevons) with mathematical
symbolism, he became a precursor of Peirce. Schroder appears to have
heard of MacColl via Peirce. But throughout his work he acknowledged
MacColl’s priority. His comments sometimes read as if MacColl’s cal-
culus is a purely historical precursor of Peirce’s logic. Schroder was
quite attracted to Peirce’s ideas, possibly because his interests in logic
changed while he was still writing the first two volumes of his Vor-
lesungen. His new interest was an “Algebra and Logic of Relatives”,
the first volume appearing in 1895, which he elaborated according to
Peirce’s model. Therefore Schréder’s presentation of MacColl’s system
had no crucial effect on the reception of MacColl’s ideas.

This state of affairs was not changed by the fact that MacColl cut
a good figure in the competition of logical systems during the heyday
of the algebra of logic between 1864 and 1890, at least according to
Schroder. The modal operations, characteristic for MacColl’ s Symbolic
Logic of 1906, were not formulated in the early parts of the series of
papers “The Calculus of Equivalent Statements” to which Schréder
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referred. Nevertheless, it is possible to draw some conclusions from
the early reception, compared to the acceptance of MacColl’s later
work. The logic discussion of the time shows the importance of the
organon aspect of logic. The logical calculus was regarded as a tool
for the solution of logical problems, but also for problems from other
areas which could be translated into logical language. These areas
included mathematics, the philosophy of science, jurisprudence, but
also genealogy. Questions of symbolism played a predominant role
in evaluating the usability of the calculi. The bulky symbolism of
MacColl’s later work could only prevent broader acceptance. Thus,
MacColl shared the same fate as Frege.
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