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HUGH MACCOLL AND THE
ALGEBRA OF STRICT IMPLICATION

C. I. Lewis repeatedly exempts MacColl from criticisms of his
predecessors in their accounts of implication. They had all taken
a true implication, or conditional, to be one with false antecedent
or true consequent. MacColl uniquely, and correctly in Lewis’
view, rejected this account, identifying a true implication with
the impossibility of true antecedent and false consequent. Lewis’
development of the calculus of strict implication arises directly
and explicitly out of MacColl’s work.

A close analysis of MacColl’s calculatory methods, and sum-
maries of his main theses, serve to show that MacColl’s modal
logic is in fact the logic T introduced by Feys and von Wright
many decades later, the smallest normal epistemic modal logic.

1. MacColl and Lewis

The received wisdom is that strict implication was invented and
developed by the American logician C. I. Lewis. Careful reading of
Lewis’ papers, and of his book, A Survey of Symbolic Logic (1918),
reveals that he repeatedly exempts MacColl from criticisms of his pre-
decessors in their accounts of implication. From this fact, it is clear
that Lewis knew MacColl’s work; he is not fully candid, however, in
acknowledging his debt to MacColl. Indeed, in later life Lewis seemed
to take great pains to obscure the origins of his modal calculi as they
are presented in his joint work with Langford (1932). Thus, for the
1960 Dover reprint of Lewis 1918, a whole third of the book (chapters
5 and 6), containing Lewis’ first treatment of modal logic in book form,
was completely omitted at Lewis’ instigation (the ground being that
what was said there had been superseded by the later treatment—and
indeed, the system of the Survey was flawed, in containing too pow-
erful a form of the Consistency Postulate). Furthermore, in collecting
his articles for their 1970 reprinting (Lewis 1970), Lewis omitted all
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but one of the papers published prior to 1918 on the notion of strict
implication. The result was a wholesale removal of many of what brief
acknowledgements of MacColl there were in Lewis’ writings.

MacColl suffered, however, from an even greater eclipsing of his
logical contribution than simply from being excluded from Lewis’ re-
visionist history. In the second half of the nineteenth century, the
dominant programme in logic was the Boole-Schröder algebraic sys-
tem, construing the logical constants as operators in a class algebra.
The first two volumes of Schröder’s famous Lectures on the Algebra
of Logic (1890–1905) are studded with (complimentary) references to
MacColl. As we will see, MacColl recognized that one had to supple-
ment the existing extensional algebras (extensional in that they ad-
mitted a class interpretation) with a further (intensional) operator in
order to have any prospect of properly capturing the logic of implica-
tion. Within months of MacColl’s death in December 1909 came the
publication of Whitehead and Russell’s Principia Mathematica (1910–
1912). The result was the rapid replacement of the Boole-Schröder
algebraic paradigm by the logistic methods developed by Frege, Peano
and others. Only a few years after MacColl’s death, the method of
systematic proof from axioms of a logistic formulation had replaced
the algebraic methods of calculation of the nineteenth century. Lewis
caught the spirit of the times, recasting MacColl’s modal calculus in
logistic terms. I do not want to deny that Lewis provided deep logi-
cal insights in his presentation of strict implication in the fashionable
new guise. But again, the presentational novelty served to obscure
MacColl’s contribution from all but the keenest observers.

MacColl’s logic was developed in several series of papers whose
driving methodology is the calculatory and applied paradigm of the
late nineteenth century. The preferred argument for a logical method
was its success in application to specific problems. MacColl repeatedly
claims superiority of his calculus over that of the “Boolian logicians”
as he calls them (Jevons, Schröder et al.) on the grounds of its greater
success in solving specific problems from the Educational Times or the
Proceedings of the London Mathematical Society.1 The development of
the background theory, and in particular, the systematic specification
of that theory in axiomatic and deductive terms, was a requirement
that only came later, following the development of the logistic method.

MacColl saw his calculus as differing in two main regards from the
“Boolian” calculus. First, he emphasized its propositional interpre-
tation as at least as important as the customary class interpretation.

1See, e.g., MacColl 1903b, cited in MacColl 1998, 15 May 1905.
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In fact, one of MacColl’s repeated themes is the preference for multi-
plicity of interpretation. MacColl wrote (1902, p. 362):

Perhaps the most important principle underlying my system of notation is
the principle that we may vary the meaning of any symbol or arrangement of
symbols, provided, firstly, we accompany the change of signification by a new
explanatory definition; and provided, secondly, the nature of our argument
be such that we run no risk of confounding the old meaning with the new.
Of course this variation of sense should not be resorted to wantonly and
without cause; but the cases are numerous in which it leads both to clearness
of expression and to an enormous economy in symbolic operations.

Thus his calculus admits of a class interpretation, a propositional inter-
pretation and an interpretation in probability theory. But the proposi-
tional interpretation was the novelty for such an algebraic system, and
the one MacColl emphasized as distinctive of his approach.

Secondly, he claimed that the two alethic modalities, ‘true’ and
‘false’, symbolized by ‘1’ and ‘0’ in the “Boolian” system, were inade-
quate to deal with all problems arising in mathematics. Three further
modalities he introduced were ‘certain’ (or ‘necessary’), ‘impossible’
and ‘contingent’. One motivation for this was the probabilistic inter-
pretation. A true proposition can have any probability value greater
than 0, not necessarily 1. Again, a false proposition can have any value
less than 1, not necessarily 0. When we discover that the probability of
a proposition is 1, we know it is certain, not just that it is true; when
we find its probability is 0, we know it is impossible, not just false. Of
course, these values are relative to certain evidence, so we know that the
proposition is certain, impossible or neither, relative to certain data.
MacColl first introduced ε (for certainty), η (for impossibility) and θ
(for variability, or contingency) relative to the data. Subsequently, he
generalized them to stand also for certainty tout court, that is, neces-
sity, for impossibility and for contingency. Thus aε reads ‘a is certain
(or necessary)’, aη reads ‘a is impossible’ and aθ reads ‘a is variable (or
contingent)’.2

My aim in this paper is to give a systematic presentation of
MacColl’s modal algebra. It is based on Boole’s algebra, extending
it by the alethic modalities and strict implication as further operators.
Although, as we will see, only one of these need be taken as primitive,
the rest being definable, I will take both possibility and strict impli-
cation as primitive. The situation is not unlike that in Boolean alge-
bras, which take meet, join and complement as primitive, though meet
and join can each be defined in terms of the other and complement.

2See, e.g., MacColl 1901, § 3, p. 138. He also wrote aτ for ‘a is true’ and aι for
‘a is false’.
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I will start with a reminder of the formal theory of Boolean algebras,
presented in a more systematic way than was common in MacColl’s
time. This presentation will also serve to exhibit the terminology and
methodology of proof and demonstration.

2. Boolean Algebras

An algebra consists of a set of elements closed under one or more
operations satisfying certain conditions. The idea of algebraic logic
is to define a class of algebras which characterize logical validity (or
more generally, logical consequence). For example, Boolean alge-
bras characterize classical (propositional) logic, pseudo-Boolean (some-
times called Heyting) algebras characterize intuitionistic logic, and
cylindric algebras characterize full (first-order) classical logic. In the
Russell/Whitehead paradigm, a logic is taken to be a class of wffs
and a subset of validities (or better, a consequence relation on those
wffs). The well-formed formulae of the logic are mapped to elements
of the algebra via a homomorphism3 defined on the atomic wffs which
identifies equivalent wffs. Much of algebraic logic then consists of the
identification of the algebra of equivalent wffs (the Lindenbaum alge-
bra), showing that it is free4 in a certain class of algebras, that the
set of validities is a filter5 (commonly, as in the cases cited above, the
trivial filter consisting of the maximum element alone), and studying
homomorphisms from the Lindenbaum algebra to more manageable, in
particular, finite algebras in the class.

In the Boole-Schröder paradigm, the representation of situations
goes directly to the elements of the algebra, omitting the syntactic in-
termediary of a language of wffs. The emphasis is on exploration of
the algebraic structure and solution of mathematical (and other) prob-
lems, rather than the metalogical analysis and representation theory
more common today. Logical algebra was seen as a further mathemat-
ical tool which proved itself by its utility. The algebras were studied as
individuals of a type whose properties were developed piecemeal, rather
than systematically as a class. The whole approach was—at least when
compared with that which replaced it—calculatory and unsystematic.

3A homomorphism is a mapping between algebras of the same type which pre-
serves the operations, e.g., if ◦ is a two-place operation on A matching a similar
operation on B, and h is a homomorphism from A to B, then h(a ◦ b) = ha ◦ hb.

4An informal account of when an algebra is free in a class is if it satisfies no
further conditions than those on the class as a whole.

5A filter F in a lattice (see below) is a subset such that a ∩ b ∈ F iff a ∈ F and
b ∈ F .
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The insight which the two paradigms share, however, is recognition that
logical structure responds productively to the application of algebraic
techniques.

A Boolean algebra is a complemented distributive lattice. Some
authors take lattices to be a particular type of poset (partially ordered
set), one in which every two-element subset has a sup (supremum) and
inf (infimum). However, I want to present MacColl’s ideas purely alge-
braically, so I will take lattices to be algebras, even though, as we will
see, they can also be viewed as relational structures of a certain sort. I
will by and large follow MacColl’s notation, in particular, taking . (or
concatenation) and + for meet and join respectively, and ′ for comple-
ment, and writing ε and η for the maximum and minimum elements of
the algebra.

Definition 2.1. A lattice L consists of a set of elements closed
under the operations of meet (.) and join (+): 〈A, .,+〉, subject to the
following constraints:

a.(b.c) = (a.b).c for all a, b, c ∈ A. (Associativity for meet)
a + (b + c) = (a + b) + c for all a, b, c ∈ A. (Associativity for join)
a.b = b.a, a + b = b + a for all a, b ∈ A. (Commutativity)
a.(a + b) = a + a.b = a for all a, b ∈ A. (Absorption)

L is non-trivial if there are a, b ∈ L such that a 6= b.
Lemma 2.1. In any lattice, a.a = a = a + a.6

Proof. a.a = a.(a + a.a) = a = a + a.(a + a) = a + a.
Definition 2.2. A preordering on a set X is a relation ≤ such

that

a ≤ a for all a ∈ X. (Reflexivity)
if a ≤ b and b ≤ c then a ≤ c for all a, b, c ∈ X. (Transitivity)

Definition 2.3. X is partially ordered by ≤ if ≤ is a preordering
on X such that

if a ≤ b and b ≤ a then a = b for all a, b ∈ X (Antisymmetry)

Definition 2.4. A poset is a set X with a partial ordering ≤:
〈X,≤〉.

Definition 2.5. 1. a is an upper bound of A ⊆ X if for all
b ∈ A, b ≤ a.

2. a is a lower bound of A ⊆ X if for all b ∈ A, a ≤ b.

6MacColl 1896, p. 178 (21).
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Definition 2.6. 1. a is the supremum (or least upper bound) of
A ⊆ X if a is an upper bound of A and for all b ∈ X, if b is an upper
bound of A then a ≤ b. We write a = sup(A).

2. a is the infimum (or greatest lower bound) of A ⊆ X if a is a
lower bound of A and for all b ∈ X, if b is a lower bound of A then
b ≤ a. We write a = inf(A).

Lemma 2.2. a.b = a iff a + b = b.
Proof. Suppose a.b = a. Then b = b + (a.b) Absorption

= b + a
= a + b Commutativity

Converse: similar.
Definition 2.7. Given a lattice L, define ≤ on L by: a ≤ b iff

a.b = a.
Lemma 2.3. In any lattice, if a ≤ b then a.c ≤ b.c and a+c ≤ b+c.
Proof. Suppose a ≤ b. Then a.b = a and by Lemma 2.2, a + b = b.

So (a.c).(b.c) = (a.b).(c.c) = a.c. So a.c ≤ b.c.
Similarly, (a + c) + (b + c) = (a + b) + (c + c) = b + c. So again by

Lemma 2.2, a + c ≤ b + c.
Theorem 2.1. Each lattice 〈L, ., +〉 induces a poset 〈L,≤〉 in

which every pair of elements has a sup and an inf, and vice versa.
Proof. First, we show that ≤ is a p.o. on L.

1. ≤ is reflexive, by Lemma 2.1.

2. Suppose a ≤ b and b ≤ c, i.e., a.b = a and b.c = b.
Then a.c = (a.b).c = a.(b.c) = a.b = a
i.e., a ≤ c. So ≤ is transitive.

3. Suppose a ≤ b and b ≤ a, i.e., a.b = a and b.a = b.
Then a = a.b = b.a Commutativity

= b. So ≤ is anti-symmetric.

Next we show that a + b = sup{a, b}. Note that a = a.(a + b), so
a ≤ a + b; and that b = b.(b + a)

= b.(a + b), so b ≤ a + b.
Now, suppose a ≤ c and b ≤ c. Then a.c = a and b.c = b. So a + c = c
and b + c = c, by Lemma 2.2, whence (a + b) + c = a + (b + c) =
a + c = c, and so (a + b).c = a + b, by Lemma 2.2, i.e., a + b ≤ c. So
a + b = sup{a, b}.

Similarly, a.b = inf{a, b}.
Conversely, given a poset P in which every pair of elements has a

sup and an inf, define a.b as inf{a, b} and a + b as sup{a, b}. Clearly,
on this definition, meet and join are associative and commutative. For
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absorption, since a ≤ sup{a, b}, a = inf{a, sup{a, b}} = a.(a + b), and
similarly, a = sup{a, inf{a, b}} = a + (a.b).

Lemma 2.4. Take any lattice, L. If z ≤ x iff z ≤ y for all z ∈ L,
then x = y.

Proof. Since x ≤ x, x ≤ y and since y ≤ y, y ≤ x. So as in
Theorem 2.1, x = y.

Lemma 2.5. In any lattice,

(a.b) + (a.c) ≤ a.(b + c)

and

a + (b.c) ≤ (a + b).(a + c).

Proof. a.b ≤ a.(b + c) and a.c ≤ a.(b + c), Lemma 2.3
so (a.b) + (a.c) ≤ a.(b + c). by Theorem 2.1
Moreover, a ≤ a + b and a ≤ a + c, by Theorem 2.1
so a ≤ (a + b).(a + c). Theorem 2.1
Furthermore, b ≤ a + b and c ≤ a + c,
so b.c ≤ (a + b).(a + c), by Lemma 2.3
so a + (b.c) ≤ (a + b).(a + c). by Theorem 2.1.

Definition 2.8. A lattice is distributive if

a.(b + c) = (a.b) + (a.c).7 (Distributive law of meet over join)

Lemma 2.6. In a distributive lattice,

a + (b.c) = (a + b).(a + c). (Distributive law of join over meet)

Proof. (a + b).(a + c) = (a + b).a + (a + b).c = a + c.(a + b)
= a + (c.a) + c.b = a + b.c. by Lemma 2.3

So by Lemma 2.5, a + b.c = (a + b).(a + c).
In fact, either distributive law may be derived from the other.
Definition 2.9. A lattice L has a maximum (ε) if for all a ∈ L,

a ≤ ε, and it has a minimum (η) if for all a ∈ L, η ≤ a.
Definition 2.10. A lattice L is complemented if for all a ∈ L

there is b ∈ L such that a + b = ε and a.b = η.
Lemma 2.7. In a distributive lattice, complements are unique.
Proof. Suppose a has complements b and c, i.e.,

a + b = ε = a + c

and
7MacColl 1901, p. 141.
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a.b = η = a.c.

Then b = b.(b+a) = b.(a+b) = b.(a+c) = ba+bc = ab+bc = ac+bc =
(a + b).c = (a + c).c = c.(c + a) = c.

Theorem 2.2.

1. a.ε = a;8

2. a.η = η;9

3. ε + a = ε;10

4. η + a = a.11

Proof.

1. Since a ≤ ε, a.ε = a.

2. Since η ≤ a, a.η = η.

3. Since a ≤ ε, ε + a = ε by Lemma 2.2.

4. Since η ≤ a, η + a = a by Lemma 2.2.

Definition 2.11. A Boolean algebra consists of a set of elements
closed under meet, join and complement ( ′): 〈A, ., +,′ , η, ε〉, such that
〈A, ., +〉 is a distributive lattice with maximum and minimum, and

a.a′ = η and a + a′ = ε for all a ∈ A.

Theorem 2.3. In a Boolean algebra,

1. a.b′ = η iff a ≤ b

2. a + b′ = ε iff b ≤ a

3. a′′ = a.

Proof.

1. Suppose a.b′ = η. Then a = a.ε
= a.(b + b′)
= (a.b) + (a.b′)
= a.b. So a ≤ b.

Conversely, suppose a ≤ b. Then a.b′ ≤ b.b′ by Lemma 2.3
= η. So a.b′ = η.

8MacColl 1906, p. 8 (22).
9MacColl 1906, p. 8 (23).

10MacColl 1901, p. 143 (5).
11MacColl 1901, p. 143 (6).
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2. The dual case is similar.12

3. Immediate from Lemma 2.7.

Theorem 2.4.

1. (a.b)′ = a′ + b′;13

2. (a + b)′ = a′.b′;14

3. a ≤ b iff b′ ≤ a′;

4. (a + b′c)′ = a′b + a′c′.15

Proof.

1. ab(a′ + b′) = aba′ + abb′ = η + η = η and
ab + (a′ + b′) = (a + a′ + b′)(b + a′ + b′) = ε.ε = ε.
So (ab)′ = a′ + b′.

2. a′b′(a + b) = a′b′a + a′b′b = η and
a′b′ + (a + b) = (a′ + a + b)(b′ + a + b) = ε.ε = ε.
So a′b′ = (a + b)′.

3. a ≤ b iff a = a.b iff a′ = (a.b)′ = a′ + b′ iff b′ ≤ a′.

4. (a + b′c)′ = a′(b′c)′ by (2)
= a′(b + c′) by (1)
= a′b + a′c′ by Definition 2.8.

3. Modal Algebras

MacColl’s several attempts at systematic presentation of his logic16

do not satisfy modern standards of rigour. His various statements make
clear what theses his algebra contains; what is harder to ascertain is
what it does not contain, that is, precisely how strong it is. Hughes
and Cresswell (1996) repeat the question they raised in their original
text (1968):

MacColl does give a list of ‘self-evident formulae’ and it would be interesting
to know which of the more recent modal systems is the weakest in which all
these are true. (Hughes and Cresswell 1968, p. 214 n. 177; 1996, p. 206 n. 4)

12Let P be any statement about lattices, Boolean algebras, etc. If in P we replace
≤ by ≥, . by +, + by ., and each element a by a′ (and a′ by a), we obtain the dual
(statement) P ′. Then P is true iff P ′ is true.

13MacColl 1901, p. 141; MacColl 1906, p. 8 (2).
14MacColl 1901, p. 141; MacColl 1906, p. 8 (3).
15MacColl 1906, p. 9 (1).
16E.g., MacColl 1901, 1906.
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My claim is that MacColl’s modal algebra is what has later come to be
called the normal modal logic T. The algebraic treatment of T along
with other weak modal logics was presented in Lemmon 1966, building
on work in Lemmon 1960, developing, for the modal logics T, S2, S3
and so on, what he called “extension algebras” generalizing the closure
algebras of McKinsey and Tarski 1944. The system T was characterized
as that of normal epistemic extension algebras. I will call extension
algebras (including closure algebras), modal algebras.

Definition 3.1. A modal algebra consists of a set of elements
closed under meet, join, complement and extension (possibility, π):
〈A, .,+,′ ,π , η, ε〉 such that

1. 〈A, ., +,′ , η, ε〉 is a Boolean algebra, and

2. (a + b)π = aπ + bπ. (K)

Definition 3.2. A modal algebra is epistemic if it also satisfies
the postulate

a ≤ aπ. (T)

Definition 3.3. A modal algebra is normal if it also satisfies the
postulate

ηπ = η. (N)

Definition 3.4. Let

aη = aπ ′, aε = a′η and aθ = (aε + aη)′.

Lemma 3.1.

1. aπ = a′ε′;

2. aε = a′π ′.

Proof.

1. a′ε′ = a′′η ′ by Definition 3.4 (2)

= aη ′ since a′′ = a
= aπ ′′ by Definition 3.4 (1)
= aπ.

2. a′π ′ = a′η by Definition 3.4 (1)
= aε by Definition 3.4 (2).
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Theorem 3.1.

1. (a.b)ε = aε.bε;17

2. (a + b)θ = (a′b′)θ;18

3. if a ≤ b then aπ ≤ bπ and aε ≤ bε;19

4. aε ≤ a.20

Proof.

1. (a.b)ε = (a.b)′η = (a′ + b′)η = (a′ + b′)π ′

= (a′π + b′π)′ by (K)

= a′π ′.b′π ′ = aε.bε.

2. (a + b)θ = ((a + b)ε + (a + b)η)′ = (a + b)ε′.(a + b)η′ =
(a + b)′π.(a + b)π = (a′b′)π.(a′b′)′π = (a′b′)′π.(a′b′)π =
(a′b′)ε′.(a′b′)η′ = ((a′b′)ε + (a′b′)η)′ = (a′b′)θ.

3. Suppose a ≤ b. Then a + b = b and a.b = a.
Hence bπ = (a + b)π = aπ + bπ by (K)
i.e., aπ ≤ bπ

and aε = (a.b)ε = aε.bε by (1)
i.e., aε ≤ bε.

4. a′ ≤ a′π by (T )
so a′π ′ ≤ a′′ by Theorem 2.4 (3)
i.e., aε ≤ a.

Theorem 3.2. 21

1. εη = η;

2. ηε = η;

3. ηη = ε;22

4. εε = ε;

5. εθ = η.

17MacColl 1896, p. 169 ; cf. MacColl 1906, p. 72 (7).
18MacColl 1896, p. 169 .
19MacColl 1906, p. 9 § 13.
20Cf. MacColl 1906, p. 8 (15), which reads Aε : Aτ , meaning ‘If A is certain, then

A is true’—see §4 below. MacColl writes (op.cit. § 8, p. 7) that Aε asserts more
than Aτ , which “only asserts that A is true in a particular case or instance.” Aε

asserts “that A is certain, that A is always true (or true in every case).”
21MacColl 1901, p. 140.
22See also MacColl 1998, 6 Oct 1901.
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Proof.

1. By (T ), ε ≤ επ. So εη = επ′ ≤ ε′ = η. Hence εη = η.

2. ηε = η′η = εη = η by (1).

3. ηη = ηπ′ = η′ (by N) = ε.

4. εε = ε′η = ηη = ε by (3).

5. εθ = (εε + εη)′ = (ε + η)′ by (1) and (4) = ε′ = η.

Theorem 3.3.

1. (a + a′)ε = ε;23

2. (a.a′)η = ε;24

3. (aε + aη + aθ)ε = ε.25

Proof.

1. (a + a′)ε = εε = ε.

2. (a.a′)η = ηη = ε.

3. (aε + aη + aθ)ε = ((aε + aη) + (aε + aη)′)ε = εε = ε.

Theorem 3.4. Where ◦ is π, ε, η, θ, let a−◦ = a◦′. Then26

1. aθa−θ = η;

2. a−θ = aε + aη;

3. a−ε = aη + aθ;

4. (aε + b−εcε)′ = (aη + aθ)(bε + cη + cθ);

5. (a−θ + aθbθ)′ = aθ(bε + bη).

Proof.

1. aθa−θ = aθaθ′ = η.

2. a−θ = aθ′ = (aε + aη)′′ = aε + aη.

3. By Theorem 3.1 (4), aε ≤ a
and by T , a ≤ aπ, so aε ≤ aπ by the proof of Theorem 2.1,
i.e., aε = aπ.aε = aπ.aε + η = aπ.aε + aπ.aη = aπ(aε + aη) =
(aη + (aε + aη)′)′ = (aη + aθ)′.
So a−ε = aη + aθ.

23MacColl 1896, p. 177 (2).
24MacColl 1906, p. 8 (13).
25MacColl 1906, p. 8 (14).
26MacColl 1906, p. 9.
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4. (aε + b−εcε)′ = aε′.(b−εcε)′ = a−ε.(bε′′ + cε′)

= (aη + aθ).(bε + c−ε) by (3)

= (aη + aθ).(bε + cη + cθ). by (3) again.

5. (a−θ + aθbθ)′ = aθ′′.(aθbθ)′ = aθ.(a−θ + b−θ) = aθ.a−θ +
aθ.b−θ = η + aθ.b−θ = aθ(bε + bη).

4. MacColl Algebras

A MacColl algebra is, in essence, a normal epistemic modal algebra
(or a T-algebra, for short). However, as we have noted, MacColl adds a
further operator, a conditional operator, to his algebras. Thus we can
best represent his algebra as a T-algebra with a further conditional
operator, ‘:’.

Definition 4.1. A MacColl algebra consists of a normal epis-
temic modal algebra equipped with a conditional operator, :, i.e., a
structure 〈A, ., +, ′, π, :, η, ε〉 such that

a : b = (ab′)η (SI)

a : b represents strict implication.
Theorem 4.1.

1. a : b = b′ : a′;27

2. a : b = (a′ + b)ε;

3. (x : a)(x : b) = x : ab;28

4. (a + b) : x = (a : x)(b : x).29

Proof.

1. a : b = (ab′)η = (b′a′′)η = b′ : a′.

2. a : b = (ab′)η = (ab′)′ε = (a′ + b)ε.

3. (x : a)(x : b) = (x′ + a)ε.(x′ + b)ε

= [(x′ + a).(x′ + b)]ε by (K)
= (x′ + ab)ε by Lemma 2.6
= x : ab.

4. (a : x)(b : x) = (a′ + x)ε.(b′ + x)ε = [(a′ + x).(b′ + x)]ε =
(a′b′ + x)ε = ab : x.

27MacColl 1901, p. 144 (7); MacColl 1906, p. 8 (4).
28MacColl 1906, p. 8 (5).
29MacColl 1906, p. 8 (6).



72 stephen read

Lemma 4.1.

1. a : b = ε iff a ≤ b.

2. Let a :: b =df (a : b)(b : a). Then a :: b = ε iff a = b.

Proof.

1. a ≤ b iff ab′ = η by Theorem 2.3. Suppose ab′ = η. Then
a : b = (ab′)η = ηη = ε.
Conversely, suppose a : b = ε. Then (ab′)η = ε, so (ab′)π = η.
But ab′ ≤ (ab′)π by T , so ab′ = η.

2. if a :: b = ε then a : b = b : a = ε, so a ≤ b and b ≤ a, whence
a = a.b = b.
Conversely, if a = b then a :: b = a :: a = a : a = (aa′)η =
ηη = ε.

Theorem 4.2.

1. aε = a :: ε;30

2. a : ε = ε;31

3. aη = a :: η = a : η.32

Proof.

1. a :: ε = (a : ε)(ε : a) = (aε′)η(εa′)η = (aη)η(εa′)η

= ηη(εa′)η = ε(εa′)η = (εa′)η = a′η = aε.

2. a : ε = (aε′)η = (aη)η = ηη = ε.

3. a :: η = (a : η)(η : a) = (aη′)η(ηa′)η = aη.ηη = aη = (aη′)η

= a : η.

Lemma 4.2. Let a ⊃ b =df a′+b (⊃ is material implication). Then

a.b ≤ c iff a ≤ b ⊃ c.

Proof. Suppose a.b ≤ c.
Then a = a(b′ + b) = ab′ + ab = a(b′ + ab)

≤ b′ + a.b ≤ b′ + c by Lemma 2.3
= b ⊃ c.

Conversely, suppose a ≤ b ⊃ c = b′ + c.
Then a.b ≤ (b′ + c).b by Lemma 2.3

= b′.b + c.b = b.c ≤ c.
30MacColl 1901, p. 144 (10).
31MacColl 1998, 6 Oct 1901.
32MacColl 1901, p. 144 (11).
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Lemma 4.3. (a ⊃ b)ε ≤ aε ⊃ bε.
Proof. Note that a.(a′ + b) = a.a′ + a.b = ab ≤ b.

So aε.(a′ + b)ε = (a.(a′ + b))ε by Theorem 3.1 (1)
≤ bε by Theorem 3.1 (3).

So (a ⊃ b)ε = (a′ + b)ε ≤ aε ⊃ bε by Lemma 4.2.
Theorem 4.3. aε.(a : b) ≤ bε.33

Proof. By Lemma 4.3, a : b ≤ aε ⊃ bε.
So by Lemma 4.2, aε.(a : b) ≤ bε.

We have now shown that MacColl’s logic was at least as strong as
the modal logic T. The three principles which are crucial to this are:

Theorem 3.1 (1) (a.b)ε = aε.bε i.e., K
Theorem 3.1 (4) aε ≤ a i.e., T
Theorem 3.2 (3) ηη = ε i.e., N .

Let us show that these results are each equivalent to the principles
stated. We can see from the results adduced that each of the principles
K, T and N entails the results given. Conversely: first, suppose

(a.b)ε = aε.bε. (*)

Then (a + b)π = (a′b′)′π = (a′b′)ε′ = (a′ε.b′ε)′ by (*)
= (aηbη)′ = aη′ + bη′ = aπ + bπ,

i.e., (*) entails K.
Next, suppose

aε ≤ a. (**)

We need to derive T , viz a ≤ aπ. Substituting a′ for a in (**), we
have a′ε ≤ a′, so by Theorem 2.4 (3), a′′ ≤ a′ε′, whence a ≤ aπ by
Theorem 2.3 (3) and Theorem 3.1 (1).

Finally, suppose
ηη = ε. (***)

We need to derive N , viz ηπ = η.
From (***), η = ε′ = ηη′ = ηπ′′ by Definition 3.4 (1)

= ηπ.
Might MacColl’s calculus be stronger than T? There is good reason

to think not. For T is among the strongest systems in which there
are infinitely many modalities. Any stronger system would contain
reduction laws, such as aππ = aπ. But MacColl makes no reference

33MacColl 1906, p. 9 § 13; cf. Spencer 1973, p. 57 (10).
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to any such reduction.34 Note that η and ε behave differently when
used as exponents and as formulae themselves. For aηε, for example,
means (aη)ε, not a(ηε), so the fact that, say, ηε = η is irrelevant to
such possible reductions of exponents. In MacColl 1903a, p. 361, he
considers the formula aθθε + aθθη + aθθθ, but makes no suggestion that
the complex modalities can be reduced. In fact, in MacColl 1897 he
explicitly rejects aε : aεε (the characteristic axiom of S4) and its like:

when the statement α or β may belong sometimes to one and sometimes
to another of the three classes ε, η, θ, the formulae (α : β)ε : (α : β) and
(α : β)η : (α : β)′ will of course still be valid, but not always the converse
formulae (α : β) : (α : β)ε and (α : β)′ : (α : β)η. Similarly, we may still
accept αεε : αε, αεη : αει [i.e., αεη : αε′], αηη : αηι, &c., as valid, but not their
converses αε : αεε, αει : αεη, αηι : αηη, &c. (MacColl 1897, p. 579)

In none of his calculations does he try to reduce the number of modal-
ities by such laws.

McCall (1967) claims that MacColl’s system was “in many respects
identical to Lewis’ system S3” (p. 546). But the characteristic axiom of
S3 does not figure in the nine theses McCall attributes to MacColl35—
indeed, if it did, then since MacColl’s logic is normal, as shown above
(i.e., ηπ = η), there would ensue reduction theses such as aππ = aπ,
characteristic of S4, since S4 is the union of S3 and T. Since MacColl
explicitly endorses normality and denies any reduction laws, his logic
is T.

5. The Paradoxes of Implication

MacColl introduced his connective ‘:’ out of dissatisfaction with the
material implication ⊃ of the “Boolian” logicians. So it is important
to him that his algebraic analysis reject the following formulae:36

(a : b) + (b : a)(1)

and

(ab : c) : ((a : c) + (b : c)).(2)

We can show, with a suitable MacColl algebra, and suitable assign-
ments to a, b and c, that we can set (1) and (2) different from ε.

34See Spencer 1973, pp. 26–27. Spencer infers that if MacColl’s system is any of
Lewis’, it will be S1–S3. But as we have seen, it is not.

35The nine theses either follow immediately from Definition 3.4 or are proved in
or follow from Theorems 3.1, 3.3, 4.1 and 4.2.

36Spencer 1973, p. 57 (17) and (18).



maccoll and strict implication 75

Let M be based on the Boolean algebra:
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?

?

η

with operations π and : defined by the tables:

a : b ε x x′ η aπ

ε ε x η η ε
x ε ε η η ε
x′ ε x ε x x′

η ε ε ε ε η

(The table for : is of course derivative from that for π.) So x′ε = η. M
is a MacColl algebra. Let a = x and b = x′. Then (1) (a : b)+(b : a) =
(x : x′) + (x′ : x) = x′ε + xε = η + x = x 6= ε. So (1) is invalid in M.

M also serves to invalidate (2). Let a = x, b = x′ and c = η. Then
(ab : c) : ((a : c) + (b : c)) = (xx′ : η) : ((x : η) + (x′ : η)) = (xx′η′)η :
((x′ + η)ε + (x′′ + η)ε) = (ηε)η : (x′ε + xε) = ηη : (η + x) = ε : x =
(η + x)ε = xε = x 6= ε.37

Unsurprisingly, therefore, MacColl’s theory of implication avoids
the so-called paradoxes of material implication. The following are in-
valid in M:

b : (a : b)(3)

and

a′ : (a : b).(4)

In the case of (3), let a = x and b = x′ in M; then b : (a : b) = x′ : (x :
x′) = x′ : (x′ + x′)ε = x′ : x′ε = x′ : η = (x′′ + η)ε = xε = x 6= ε. The
same assignment invalidates (4) as well, for then a′ : (a : b) = x′ : (x :
x′) = x 6= ε.

MacColl gives natural language examples to support this rejection
of material implication as the correct account of implication. He sug-
gests letting a = ‘He will persist in his extravagance’ and b = ‘He will
be ruined’. Then (3) is rejected because even if he is ruined, we may

37MacColl (1906, § 70 pp. 74–5) gives a counterexample to (2). See also MacColl
1903a, p. 362. Cf. Shearman 1906, pp. 29–30.
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still hold that he might have persisted in his extravagance and not have
been ruined; and (4) is rejected because, even if he does not persist in
his extravagance, we may again hold that he might have persisted and
still not have been ruined. On a material account of implication these
thoughts are simply contradictory, for (a ⊃ b)′ = ab′, which contra-
dicts both b and a′, leaving no room to distinguish between supposing
he might persist and not be ruined and supposing he does persist and is
not ruined. The conditional, says MacColl, contains a modal element,
revealed by negating it. (a : b)′ = (ab′)η′ = (ab′)π, that is, it is possible
that a (he persists) and b′ (he is not ruined).

Nonetheless, this analysis does open MacColl (as it did Lewis38) to
the so-called paradoxes of strict implication.

Theorem 5.1. 39

1. a : ε = ε;

2. η : a = ε;

3. bε : (a : b) = ε;

4. aη : (a : b) = ε.

Proof.

1. a : ε = (a′ + ε)ε = εε = ε.

2. η : a = (ηa′)η = ηη = ε.

3. b ≤ a′ + b, so bε ≤ (a′ + b)ε by Theorem 3.1 (3)
= a : b.

So bε : (a : b) = ε by Lemma 4.1 (1).

4. ab′ ≤ a, so a′ ≤ (ab′)′ by Theorem 2.4 (3)
whence aη = a′ε ≤ (ab′)′ε by Theorem 3.1 (3)

= (ab′)η = a : b.
So aη : (a : b) = ε by Lemma 4.1 (1).

In fact, it is a mistake simply to identify Theorem 5.1 (1) and (2)
with the paradoxes of strict implication. For all they say is that there
is a maximum (weakest) proposition (ε) implied by all others, and
a minimum (strongest) proposition (η) which implies all others. Such
so-called “Church constants” can in fact be added conservatively to rel-
evance logic, that is, they can be added without necessarily disturbing
the relevance features of the implication relation between other propo-
sitions.40 It is (3) and (4) from Theorem 5.1 which exhibit a wider

38Lewis 1918, pp. 335 ff.; Lewis and Langford 1932, pp. 175 ff.
39MacColl 1901, p. 143 (3); Spencer 1973, p. 57 (12), (13).
40Anderson and Belnap 1975, § 27.1.2.
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spread of irrelevance, that any necessary proposition (not just ε) is im-
plied by any other, and that any impossible proposition (not just η)
implies any other.

In a letter to Russell, MacColl says that

[i]t is true that in ordinary speech the conjunction if usually suggests some
necessary relation between the two sentences it connects; but the exigencies
of logic force us to adhere to our definition, A : B = (AB′)η and disregard
this suggested relation. (MacColl 1998, 19 July 1901)

But this is an overstatement. If we choose to adhere to MacColl’s
definition, the exigencies of logic do indeed force us to disregard the
suggested relation. But we might choose to explore an alternative def-
inition. Elsewhere, MacColl dismisses this as psychologism.41 But his
own example in the letter to Russell shows that it is not a fair charge.
He instances three (large) numbers, a, b and c, where ab 6= c but not
obviously so. Nonetheless, urges MacColl, Russell should concede, even
before calculating the product of a and b, that

if ab = c then 2ab = 2c.(5)

But he goes on to observe that what makes (5) true is the impossibility
of the equation ab = c (since ab 6= c). But that undercuts his demand
that Russell concede (5) before calculating. Obviously, if ab = c then
2ab = 2c; whereas it is not clear that, say, if ab = c then 2ab = 7c. (For
if ab = c and 2ab = 7c, then c = 0 and so a = b = 0 too.) MacColl
starts his example by recognising the relevance of implication, even
though he ends by denying it.

To avoid even the irrelevance of the paradoxes of strict implication,
one has to take a further step not contemplated by MacColl or Lewis.
The source of their failure here lies in the fact that ‘:’ is not dyadically
intensional. It is the modalization of a truth-function. The truth-
function ‘and not’ is dyadic; but the modal operator ‘is impossible’ is
monadic. Sugihara (1955) produced a matrix to sieve out maximal and
minimal formulae in implications; and Meyer (1974)42 showed that no
modalization of a truth-function could capture implication in any logic
contained in that characterized by the Sugihara matrix, viz RM.43 Not
until implication is introduced by a truly dyadic intensional operator
can the paradoxes of strict implication be excluded.

41MacColl 1906, §§ 77–8, pp. 81–3.
42Cf. Anderson and Belnap 1975, § 29.12.
43See also Anderson and Belnap 1975, § 27.1.1.
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Definition 5.1. A semi-group consists of a set of elements closed
under an associative operation, ◦ (fusion): 〈A, ◦〉 such that

a ◦ (b ◦ c) = (a ◦ b) ◦ c for all a, b, c ∈ A. (Associativity for ◦)

Definition 5.2. A monoid is a semi-group with an identity, ε:
〈A, ◦, ε〉 such that

a ◦ ε = a = ε ◦ a. (Identity)

Definition 5.3. A semi-group is commutative if

a ◦ b = b ◦ a. (Commutativity for ◦)

Definition 5.4. A lattice-ordered semi-group consists of a set of
elements closed under meet, join and fusion: 〈A, .,+, ◦〉 such that
〈A, .,+〉 is a lattice, 〈A, ◦〉 is a semi-group and

a ◦ (b + c) = a ◦ b + a ◦ c for all a, b, c ∈ A (Distribution of ◦ over +)

Definition 5.5. A lattice-ordered semi-group A is residuated if
∀a, b ∈ A,∃x, y ∈ A such that

∀c ∈ A, c ≤ x iff c ◦ a ≤ b

and

∀c ∈ A, c ≤ y iff a ◦ c ≤ b.

We write x = a → b and y = b ← a.
Lemma 5.1. If a lattice-ordered semi-group is commutative, a →

b = b ← a.
Proof. c ≤ a → b iff c ◦ b ≤ a iff b ◦ c ≤ a iff c ≤ b ← a. So by

Lemma 2.4, a → b = b ← a.
Definition 5.6. A lattice-ordered semi-group A is square-

increasing if a ≤ a ◦ a for all a ∈ A.
Definition 5.7.44 A De Morgan monoid 〈A, .,+,′ , ◦, ε〉 consists

of a set of elements closed under meet, join, complement and fusion,
such that 〈A, ., +, ◦〉 is a commutative square-increasing lattice-ordered
monoid, the lattice 〈A, ., +〉 is distributive and for all a, b ∈ A:

if a ≤ b then b′ ≤ a′ (Contraposition)
a′′ = a (Double Negation)

and
a ◦ b ≤ c iff b ◦ c′ ≤ a′ iff c′ ◦ a ≤ b′ (Antilogism)

44Anderson and Belnap 1975, § 28.2.
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Lemma 5.2. In a De Morgan monoid

(a + b)′ = a′.b′

Proof. Since a ≤ a + b and b ≤ a + b,
(a + b)′ ≤ a′ and (a + b)′ ≤ b′ by Contraposition

so (a + b)′ ≤ a′.b′.
Conversely, since a′.b′ ≤ a′ and a′.b′ ≤ b′,

a = a′′ ≤ (a′.b′)′ and b = b′′ ≤ (a′.b′)′ by Contraposition
so a + b ≤ (a′.b′)′, whence a′.b′ = (a′.b′)′′ ≤ (a + b)′.

So (a + b)′ = a′.b′.
Theorem 5.2. Each De Morgan monoid is residuated.
Proof. Take a, b ∈ A, the De Morgan monoid. Then ∀c ∈ A,

c ◦ a ≤ b iff a ◦ b′ ≤ c′ by Antilogism
iff c ≤ (a ◦ b′)′ by Contraposition

Hence a → b = (a ◦ b′)′

= b ← a by Lemma 5.1, since A is commutative.
De Morgan monoids give the algebraic structure of the logic of

relevant implication, R, where the residual a → b expresses relevant
implication. The logic R2 adds to R an S4-necessity. In R2, a modal
relevant implication (entailment), a 2→ b, can be defined as 2(a → b),
equivalently, (a ◦ b′)η, where aη =df 2(a′), i.e., a′ε. The algebra of R2

adds to De Morgan monoids a closure operation, π (possibility), as in
the modal algebras above.45

Definition 5.8. A modal l-monoid 〈A, ., +,′ ,π , ◦, ε〉 consists of a
set of elements closed under meet, join, complement, possibility and
fusion, such that 〈A, .,+,′ , ◦, ε〉 is a De Morgan monoid, and

(a + b)π = aπ + bπ (K)
a ≤ aπ (T)

ηπ = η (N)
aππ ≤ aπ (4)

and
aπ ◦ bε ≤ (a ◦ b)π (MP)

where η = ε′ and aε = a′π′.
One could of course drop the postulate (4) if one wanted an algebra

without reduction theses, more in MacColl’s tradition.

45Anderson and Belnap 1975, § 28.2.5.
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Theorem 5.3.

1. Recall the definition of a ⊃ b as a′ + b. It follows that

(a ⊃ b)ε ≤ aε ⊃ bε;

2. (MP ) entails that

(a → b)ε ≤ aε → bε.

Proof.

1. The proof of Lemma 4.2 remains sound.

2. Recall that a → b = (a ◦ b′)′. From (MP ) we have (with b′

for a and a for b)

b′π ◦ aε ≤ (b′ ◦ a)π.

So (a → b)ε = (a ◦ b′)′ε = (a ◦ b′)π′

≤ (b′π◦ aε)′ = (aε◦ bε′)′ = aε→ bε.

We can show, by use of the following modal l-monoid, N, that the
paradoxes of strict implication are invalidated. Let N be based on the
same Boolean algebra as M, with the operation π as before, but now
defining ◦ independently:

a ◦ b ε x x′ η aπ

ε ε ε ε η ε
x ε x x′ η ε
x′ ε x′ ε η x′

η η η η η η

Then → and ε are given by the tables:

a → b ε x x′ η aε

ε ε η η η ε
x ε x x′ η x
x′ ε η x η η
η ε ε ε ε η

Consequently, in N, let a = x′ and b = x. Then bε → (a → b)ε = xε →
(x′ → x)ε = x → ηε = x → η = η. Similarly, aη → (a → b)ε = η for the
same assignment to a and b. Thus the paradoxes of strict implication
are avoided in R2.
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6. Conclusion

In this paper, I have attempted to exhibit some of the richness of
MacColl’s logic by recasting it in terms of the modal algebras (closure
and extension algebras) of McKinsey, Tarski and Lemmon. Within this
algebraic framework, I have derived many of MacColl’s characteristic
theses. Three of his theses, in particular, regarding necessity (ε) show
that MacColl’s logic was in fact the logic now known as T later in-
troduced independently (of MacColl) by Feys (1937–1938) (his system
t of § 28) and von Wright (1951) (his system M of Appendix II). It
is interesting to speculate whether it was not the fact that MacColl
was working within the Boole-Schröder algebraic paradigm which led
him to normality (ηπ = η, equivalently, εε = ε, von Wright’s Rule of
Tautology) and T, while Lewis’ reformulation of modal logic within the
proof-theoretic logistic of Frege, Peano and Russell took him away into
the dead end of S1, S2 and S3.

I have explored only a small portion of MacColl’s logic. There are
many further original and fecund ideas remaining for investigation. I
hope the framework I have developed here will prove a fruitful one for
at least some of this exploration.

It should be noted, however, that I have left certain ideas delib-
erately unexplored because of an initial resistance to interpretation.
Recall that I have used ε and η both as elements of the algebra and
as operators (exponents). As I have used them, there is a systematic
ambiguity. Nothing warranted use of the same symbol other than the
two equations from Theorem 4.2:

aε = a :: ε
and

aη = a :: η.

MacColl proceeds to use the connection between the element a :: b and
the equation a = b expressed in Lemma 4.1 (2) to write these as46

aε = (a = ε) (†)
and

aη = (a = η) (††)

and so to read aε not as an element but as expressing the validity of
a, i.e., a = ε, and similarly for η to express invalidity. (†) and (††) are

46MacColl 1901 pp. 143–4 (10) and (11).
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ill-formed in my canon. For MacColl they support the identification of
ε and η as element and exponent.

So far I can follow him, though only by the systematic ambiguity
noted. However, MacColl proceeds to introduce θ as an element too,
corresponding to the operator, θ. Thus he claims, for example,

θε = θη = η, 47

that is, it is impossible that a variable (contingent) element be either
certain (ε) or impossible (η). It is an interesting question whether this
idea can be so expressed in the language of modal algebras.

A different direction for research on MacColl’s ideas would be to
take further the suggestions I made in § 5, to develop an implication
which is truly dyadic. The theory of modal l-monoids, combining the
ideas of modal (i.e., closure and extension) algebras and De Morgan
monoids, is largely unexplored.
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